Skip to main content

Advertisement

Log in

Esophageal Squamous Cell Carcinoma: Assessing Tumor Angiogenesis Using Multi-Slice CT Perfusion Imaging

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to investigate the correlation between multi-slice computed tomographic perfusion imaging (CTPI) parameters and immunohistologic markers of angiogenesis in esophageal squamous cell carcinoma (ESCC).

Methods

Fifty patients with histologically proven esophageal squamous cell carcinoma were enrolled in this study. All subjects underwent multi-slice CT perfusion scan. The hemodynamic parameters of vascular tumor, including blood volume (BV), blood flow (BF), mean transit time (MTT) and permeability surface (PS) were generated. All the ESCC specimens were stained immunohistochemically to identify CD31 for quantification of microvessel density (MVD). CTPI parameters were correlated with MVD by using Pearson correlation analysis.

Results

The value of CT perfusion parameters of ESCC were as follows: BF 116.71 ± 47.59 ml/100 g/min, BV 6.74 ± 2.70 ml/100 g, MTT 6.42 ± 2.84 s, PS 13.82 ± 6.25 ml/100 g/min. The mean MVD of all 50 tumor specimens was 34.44 ± 19.75. The PS values were significantly higher in ESCC patients with involvement of lymph node than those without involvement of lymph node (p < 0.01). Blood volume and permeability surface were positively correlated with MVD (p < 0.01), whereas no significant correlation was observed between MVD and BF or between MVD and MTT.

Conclusions

Blood volume and permeability surface were positively correlated with MVD. CTPI could reflect the angiogenesis in ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pircher A, Medinger M, Drevs J. Liver cancer: targeted future options. World J Hepatol. 2011;3:38–44.

    Article  PubMed  Google Scholar 

  2. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3:401–410.

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–936.

    Article  PubMed  CAS  Google Scholar 

  4. Gotink KJ, Verheul HM. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis. 2010;13:1–14.

    Article  PubMed  CAS  Google Scholar 

  5. Verheul HM, Voest EE, Schlingemann RO. Are tumours angiogenesis-dependent? J Pathol. 2004;202:5–13.

    Article  PubMed  CAS  Google Scholar 

  6. Fox SB, Harris AL. Histological quantitation of tumour angiogenesis. APMIS. 2004;112:413–430.

    Article  PubMed  Google Scholar 

  7. Choi JY, Jang KT, Shim YM, Kim K, et al. Prognostic significance of vascular endothelial growth factor expression and microvessel density in esophageal squamous cell carcinoma: comparison with positron emission tomography. Ann Surg Oncol. 2006;13:1054–1062.

    Article  PubMed  Google Scholar 

  8. El-Shahat M, Lotfy M, Fahmy L, Abouel-Nour MF, et al. Prognostic value of microvessel density, matrix metalloproteinase-9 and p53 protein expression in esophageal cancer. J Egypt Natl Cancer Inst. 2004;16:224–230.

    Google Scholar 

  9. Ash L, Teknos TN, Gandhi D, Patel S, et al. Head and neck squamous cell carcinoma: CT perfusion can help noninvasively predict intratumoral microvessel density. Radiology. 2009;251:422–428.

    Article  PubMed  Google Scholar 

  10. Delrue L, Blanckaert P, Mertens D, Cesmeli E, et al. Assessment of tumor vascularization in pancreatic adenocarcinoma using 128-slice perfusion computed tomography imaging. J Comput Assist Tomogr. 2011;35:434–438.

    Article  PubMed  Google Scholar 

  11. Willett CG, Boucher Y, di Tomaso E, Duda DG, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10:145–147.

    Article  PubMed  CAS  Google Scholar 

  12. Zhu AX, Holalkere NS, Muzikansky A, Horgan K, et al. Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist. 2008;13:120–125.

    Article  PubMed  CAS  Google Scholar 

  13. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324:1–8.

    Article  PubMed  CAS  Google Scholar 

  14. Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972;136:261–276.

    Article  PubMed  Google Scholar 

  15. West CM, Cooper RA, Loncaster JA, Wilks DP, et al. Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res. 2001;61:2907–2910.

    PubMed  CAS  Google Scholar 

  16. Tozer GM. Measuring tumour vascular response to antivascular and antiangiogenic drugs. Br J Radiol. 2003;76:S23–S35.

    Article  PubMed  CAS  Google Scholar 

  17. Woodfin A, Voisin MB, Nourshargh S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol. 2007;27:2514–2523.

    Article  PubMed  CAS  Google Scholar 

  18. Newman PJ, Newman DK. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol. 2003;23:953–964.

    Article  PubMed  CAS  Google Scholar 

  19. Privratsky JR, Newman DK, Newman PJ. PECAM-1: conflicts of interest in inflammation. Life Sci. 2010;87:69–82.

    Article  PubMed  CAS  Google Scholar 

  20. El-Gohary YM, Metwally G, Saad RS, Robinson MJ, et al. Prognostic significance of intratumoral and peritumoral lymphatic density and blood vessel density in invasive breast carcinomas. Am J Clin Pathol. 2008;129:578–586.

    Article  PubMed  Google Scholar 

  21. Kupisz K, Chibowski D, Klatka J, Klonowski S, et al. Tumor angiogenesis in patients with laryngeal cancer. Eur Arch Otorhinolaryngol. 1999;256:303–305.

    Article  PubMed  CAS  Google Scholar 

  22. Abdalla SA, Behzad F, Bsharah S, Kumar S, et al. Prognostic relevance of microvessel density in colorectal tumours. Oncol Rep. 1999;6:839–842.

    PubMed  CAS  Google Scholar 

  23. Sun HC, Tang ZY, Li XM, Zhou YN, et al. Microvessel density of hepatocellular carcinoma: its relationship with prognosis. J Cancer Res Clin Oncol. 1999;125:419–426.

    Article  PubMed  CAS  Google Scholar 

  24. Lucchi M, Fontanini G, Mussi A, Vignati S, et al. Tumor angiogenesis and biologic markers in resected stage I NSCLC. Eur J Cardiothorac Surg. 1997;12:535–541.

    Article  PubMed  CAS  Google Scholar 

  25. Weidner N, Folkman J, Pozza F, Bevilacqua P, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992;84:1875–1887.

    Article  PubMed  CAS  Google Scholar 

  26. Nakagawa S, Nishimaki T, Suzuki T, Kanda T, et al. Tumor angiogenesis as an independent prognostic factor after extended radical esophagectomy for invasive squamous cell carcinoma of the esophagus. Surgery. 2001;129:302–308.

    Article  PubMed  CAS  Google Scholar 

  27. Elpek GO, Gelen T, Aksoy NH, Erdogan A, et al. The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus. J Clin Pathol. 2001;54:940–944.

    Article  PubMed  CAS  Google Scholar 

  28. Miles KA. Tumour angiogenesis and its relation to contrast enhancement on computed tomography: a review. Eur J Radiol. 1999;30:198–205.

    Article  PubMed  CAS  Google Scholar 

  29. Provenzale JM. Imaging of angiogenesis: clinical techniques and novel imaging methods. AJR Am J Roentgenol. 2007;188:11–23.

    Article  PubMed  Google Scholar 

  30. Chen Y, Zhang J, Dai J, Feng X, et al. Angiogenesis of renal cell carcinoma: perfusion CT findings. Abdom Imaging. 2010;35:622–628.

    Article  PubMed  Google Scholar 

  31. Cuenod CA, Fournier L, Balvay D, Guinebretiere JM. Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging. 2006;31:188–193.

    Article  PubMed  CAS  Google Scholar 

  32. Sahani DV, Kalva SP, Hamberg LM, Hahn PF, et al. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology. 2005;234:785–792.

    Article  PubMed  Google Scholar 

  33. Greenstein AJ, Litle VR, Swanson SJ, Divino CM, et al. Effect of the number of lymph nodes sampled on postoperative survival of lymph node-negative esophageal cancer. Cancer. 2008;112:1239–1246.

    Article  PubMed  Google Scholar 

  34. Goh V, Halligan S, Wellsted DM, Bartram CI. Can perfusion CT assessment of primary colorectal adenocarcinoma blood flow at staging predict for subsequent metastatic disease? A pilot study. Eur Radiol. 2009;19:79–89.

    Article  PubMed  Google Scholar 

  35. Bellomi M, Viotti S, Preda L, D’Andrea G, et al. Perfusion CT in solid body-tumours. Part II: clinical applications and future development. Radiol Med. 2010;115:858–874.

    Article  PubMed  CAS  Google Scholar 

  36. Li JP, Zhao DL, Jiang HJ, Huang YH, et al. Assessment of tumor vascularization with functional computed tomography perfusion imaging in patients with cirrhotic liver disease. Hepatobiliary Pancreat Dis Int. 2011;10:43–49.

    Article  PubMed  CAS  Google Scholar 

  37. Li ZP, Meng QF, Sun CH, Xu DS, et al. Tumor angiogenesis and dynamic CT in colorectal carcinoma: radiologic-pathologic correlation. World J Gastroenterol. 2005;11:1287–1291.

    PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Kui-Shen Chen (Department of Pathology, the First Affiliated Hospital of Zhengzhou University) for helpful discussions concerning the manuscript. We acknowledge Jian-Bo Gao (the First Affiliated Hospital of Zhengzhou University) for technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Zhang or Hai-Liang Li.

Additional information

Tao Song, Yu-Guang Shen, and Na-Na Jiao are co-first authors and contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, T., Shen, YG., Jiao, NN. et al. Esophageal Squamous Cell Carcinoma: Assessing Tumor Angiogenesis Using Multi-Slice CT Perfusion Imaging. Dig Dis Sci 57, 2195–2202 (2012). https://doi.org/10.1007/s10620-012-2149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2149-9

Keywords

Navigation