Skip to main content
Log in

Intestinal Epithelial Cells with Impaired Autophagy Lose Their Adhesive Capacity in the Presence of TNF-α

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Objectives

Genome-wide association studies have revealed a link between autophagy-related (ATG) genes and susceptibility to Crohn’s disease. This suggests underlying involvement of autophagy impairment in the pathogenesis of Crohn’s disease. This study was performed to investigate the pathophysiological importance of autophagy impairment in intestinal epithelial cells exposed to TNF-α.

Methods

Human colonic epithelial cells (HT-29) and rat small intestinal epithelial cells (IEC-18) were used. Formation of phosphatidylethanolamine-conjugated microtubule-associated protein light chain 3 (LC3-II) was monitored as a marker of autophagy. Autophagy was inhibited using 3-methyladenine or short interfering RNA targeting ATG5 and ATG16L1.

Results

TNF-α treatment elicited a significant dose-dependent increase in LC3-II protein levels, thus autophagy is induced in the presence of TNF-α. Combined autophagy inhibition and TNF-α treatment induced a marked increase in the number of detached cells and a decrease in activated integrin β1 protein levels. Trypan blue staining indicated 70–80 % of the detached cells were alive, suggesting that these cells became detached not because they were killed but because of dysfunction of cellular adhesion.

Conclusions

This is the first study indicating that intestinal epithelial cells with impaired autophagy lose their adhesive capacity in the presence of TNF-α. These observations indicate that impairment of autophagy leads to disruption of the intestinal epithelial cell layers in TNF-α-rich environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–1348.

    Article  PubMed  CAS  Google Scholar 

  2. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21:2861–2873.

    Article  PubMed  CAS  Google Scholar 

  3. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    Article  PubMed  CAS  Google Scholar 

  4. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323–335.

    Article  PubMed  CAS  Google Scholar 

  5. Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–889.

    Article  PubMed  CAS  Google Scholar 

  6. Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–884.

    Article  PubMed  CAS  Google Scholar 

  7. Sarkar S, Perlstein EO, Imarisio S, et al. Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol. 2007;3:331–338.

    Article  PubMed  CAS  Google Scholar 

  8. Py BF, Lipinski MM, Yuan J. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy. 2007;3:117–125.

    PubMed  CAS  Google Scholar 

  9. Birmingham CL, Smith AC, Bakowski MA, et al. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem. 2006;281:11374–11383.

    Article  PubMed  CAS  Google Scholar 

  10. Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39:596–604.

    Article  PubMed  CAS  Google Scholar 

  11. Consortium. TWTCC. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678.

    Article  Google Scholar 

  12. Mathew CG. New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat Rev Genet. 2008;9:9–14.

    Article  PubMed  CAS  Google Scholar 

  13. Xavier RJ, Huett A, Rioux JD. Autophagy as an important process in gut homeostasis and Crohn’s disease pathogenesis. Gut. 2008;57:717–720.

    Article  PubMed  CAS  Google Scholar 

  14. Travassos LH, Carneiro LA, Ramjeet M, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11:55–62.

    Article  PubMed  CAS  Google Scholar 

  15. Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16:90–97.

    Article  PubMed  CAS  Google Scholar 

  16. Kuballa P, Huett A, Rioux JD, et al. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS ONE. 2008;3:e3391.

    Article  PubMed  Google Scholar 

  17. Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA. 1982;79:1889–1892.

    Article  PubMed  CAS  Google Scholar 

  18. Hendil KB, Lauridsen AM, Seglen PO. Both endocytic and endogenous protein degradation in fibroblasts is stimulated by serum/amino acid deprivation and inhibited by 3-methyladenine. Biochem J. 1990;272:577–581.

    PubMed  CAS  Google Scholar 

  19. Plopper G, Ingber DE. Rapid induction and isolation of focal adhesion complexes. Biochem Biophys Res Commun. 1993;193:571–578.

    Article  PubMed  CAS  Google Scholar 

  20. Koukouritaki SB, Vardaki EA, Papakonstanti EA, et al. TNF-alpha induces actin cytoskeleton reorganization in glomerular epithelial cells involving tyrosine phosphorylation of paxillin and focal adhesion kinase. Mol Med. 1999;5:382–392.

    PubMed  CAS  Google Scholar 

  21. Campos SB, Ashworth SL, Wean S, et al. Cytokine-induced F-actin reorganization in endothelial cells involves RhoA activation. Am J Physiol Renal Physiol. 2009;296:F487–F495.

    Article  PubMed  CAS  Google Scholar 

  22. Kadandale P, Stender JD, Glass CK, et al. Conserved role for autophagy in Rho1-mediated cortical remodeling and blood cell recruitment. Proc Natl Acad Sci USA. 2010;107:10502–10507.

    Article  PubMed  CAS  Google Scholar 

  23. Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol. 2003;66:1403–1408.

    Article  PubMed  CAS  Google Scholar 

  24. Kollias G, Douni E, Kassiotis G, et al. The function of tumour necrosis factor and receptors in models of multi-organ inflammation, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Ann Rheum Dis. 1999;58:I32–I39.

    Article  PubMed  CAS  Google Scholar 

  25. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–1635.

    Article  PubMed  CAS  Google Scholar 

  26. Wajant H, Scheurich P. TNFR1-induced activation of the classical NF-kappaB pathway. FEBS J. 2011;278:862–876.

    Article  PubMed  CAS  Google Scholar 

  27. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.

    Article  PubMed  CAS  Google Scholar 

  28. Fujishima Y, Nishiumi S, Masuda A, et al. Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-kappaB activation. Arch Biochem Biophys. 2011;506:223–235.

    Article  PubMed  CAS  Google Scholar 

  29. Giancotti FG, Ruoslahti E. Integrin signaling. Science. 1999;285:1028–1032.

    Article  PubMed  CAS  Google Scholar 

  30. Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3:1–14.

    Article  Google Scholar 

  31. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–687.

    Article  PubMed  CAS  Google Scholar 

  32. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–280.

    Article  PubMed  CAS  Google Scholar 

  33. Gille J, Swerlick RA. Integrins: role in cell adhesion and communication. Ann N Y Acad Sci. 1996;797:93–106.

    Article  PubMed  CAS  Google Scholar 

  34. Hodivala-Dilke KM, DiPersio CM, Kreidberg JA, et al. Novel roles for alpha3beta1 integrin as a regulator of cytoskeletal assembly and as a trans-dominant inhibitor of integrin receptor function in mouse keratinocytes. J Cell Biol. 1998;142:1357–1369.

    Article  PubMed  CAS  Google Scholar 

  35. Choma DP, Pumiglia K, DiPersio CM. Integrin alpha3beta1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1. J Cell Sci. 2004;117:3947–3959.

    Article  PubMed  CAS  Google Scholar 

  36. Stutzmann J, Bellissent-Waydelich A, Fontao L, et al. Adhesion complexes implicated in intestinal epithelial cell-matrix interactions. Microsc Res Tech. 2000;51:179–190.

    Article  PubMed  CAS  Google Scholar 

  37. Kim M, Ogawa M, Fujita Y, et al. Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature. 2009;459:578–582.

    Article  PubMed  CAS  Google Scholar 

  38. Muenzner P, Bachmann V, Zimmermann W, et al. Human-restricted bacterial pathogens block shedding of epithelial cells by stimulating integrin activation. Science. 2010;329:1197–1201.

    Article  PubMed  CAS  Google Scholar 

  39. Kapron-Bras C, Fitz-Gibbon L, Jeevaratnam P, et al. Stimulation of tyrosine phosphorylation and accumulation of GTP-bound p21ras upon antibody-mediated alpha 2 beta 1 integrin activation in T-lymphoblastic cells. J Biol Chem. 1993;268:20701–20704.

    PubMed  CAS  Google Scholar 

  40. Shaw LM, Messier JM, Mercurio AM. The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the alpha 6 beta 1 integrin. J Cell Biol. 1990;110:2167–2174.

    Article  PubMed  CAS  Google Scholar 

  41. Chou DH, Lee W, McCulloch CA. TNF-alpha inactivation of collagen receptors: implications for fibroblast function and fibrosis. J Immunol. 1996;156:4354–4362.

    PubMed  CAS  Google Scholar 

  42. Van Assche G, Vermeire S, Rutgeerts P. The potential for disease modification in Crohn’s disease. Nat Rev Gastroenterol Hepatol. 2010;7:79–85.

    Article  PubMed  Google Scholar 

  43. van Assche G, Vermeire S, Rutgeerts P. Mucosal healing and anti TNFs in IBD. Curr Drug Targets. 2010;11:227–233.

    Article  PubMed  Google Scholar 

  44. Colombel JF, Sandborn WJ, Reinisch W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease. N Engl J Med. 2010;362:1383–1395.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Katsuno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, M., Katsuno, T., Nakagawa, T. et al. Intestinal Epithelial Cells with Impaired Autophagy Lose Their Adhesive Capacity in the Presence of TNF-α. Dig Dis Sci 57, 2022–2030 (2012). https://doi.org/10.1007/s10620-012-2133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2133-4

Keywords

Navigation