Skip to main content

Advertisement

Log in

Expression of Toll-Like Receptors 2 and 3 on Esophageal Epithelial Cell Lines and on Eosinophils During Esophagitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The chronic disease eosinophilic esophagitis may be mediated by the innate immune system. Activation of toll-like receptors (TLRs) in other tissues is known to initiate eosinophil infiltration, thus TLRs may be a potential mediator of esophageal eosinophilia. Little is known about TLRs in the esophagus.

Aims

The purpose of this study was to identify the presence and activation of TLR2 and TLR3 on esophageal epithelial cell lines, primary epithelial cells and mucosal esophageal biopsies.

Methods

TLR2 and TLR3 were identified by immunocytochemistry and immunoblot. PCR assessed alterations to gene expression by activation of TLR2 and TLR3. Immunohistochemistry co-localized eosinophils and TLR2/TLR3 on esophageal biopsies.

Results

TLR2 and TLR3 were expressed on the esophageal adenocarcinoma cell lines TE-1 and TE-7, but only TLR3 was present on the esophageal epithelial cell line HET-1A. Thymic stromal lymphopoietin gene expression was altered in response to ligands zymosan and polyI:C, demonstrating activation. Primary esophageal epithelial cells did not express TLR2 or TLR3. In esophageal biopsies, TLR2 and TLR3 expression was limited to eosinophils and other immune cells during esophagitis.

Conclusions

TLR2 and TLR3 expression on cultured esophageal epithelial cells differs from TLR2 and TLR3 expression in esophageal biopsies, which is limited to immune cells during esophagitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EDN:

Eosinophil derived neurotoxin

EoE:

Eosinophilic esophagitis

HPF:

High power field

PAMP:

Pathogen-associated molecular pattern

PRR:

Pattern recognition receptor

TLR:

Toll-like receptor

References

  1. Furuta GT, Liacouras CA, Collins MH, et al. Eosinophilic esophagitis in children and adults: a systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology. 2007;133:1342–1363.

    Article  PubMed  CAS  Google Scholar 

  2. Mulder DJ, Justinich CJ. Understanding eosinophilic esophagitis: the cellular and molecular mechanisms of an emerging disease. Mucosal Immunol. 2011;4:139–147.

    Article  PubMed  CAS  Google Scholar 

  3. Rothenberg ME. Biology and treatment of eosinophilic esophagitis. Gastroenterology. 2009;137:1238–1249.

    Article  PubMed  CAS  Google Scholar 

  4. Terhorst D, Kalali BN, Ollert M, Ring J, Mempel M. The role of toll-like receptors in host defenses and their relevance to dermatologic diseases. Am J Clin Dermatol. 2010;11:1–10.

    Article  PubMed  Google Scholar 

  5. Albert EJ, Duplisea J, Dawicki W, Haidl ID, Marshall JS. Tissue eosinophilia in a mouse model of colitis is highly dependent on TLR2 and independent of mast cells. Am J Pathol. 2011;178:150–160.

    Article  PubMed  CAS  Google Scholar 

  6. Yang D, Chen Q, Su SB, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med. 2008;205:79–90.

    Article  PubMed  CAS  Google Scholar 

  7. Uehara A, Fujimoto Y, Fukase K, Takada H. Various human epithelial cells express functional toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Mol Immunol. 2007;44:3100–3111.

    Article  PubMed  CAS  Google Scholar 

  8. Zhu X, Wang M, Mavi P, et al. Interleukin-15 expression is increased in human eosinophilic esophagitis and mediates pathogenesis in mice. Gastroenterology. 2010;139:182–193.

    Article  PubMed  CAS  Google Scholar 

  9. Buckland KF, O’Connor E, Murray LA, Hogaboam CM. Toll like receptor-2 modulates both innate and adaptive immune responses during chronic fungal asthma in mice. Inflamm Res. 2008;57:379–387.

    Article  PubMed  CAS  Google Scholar 

  10. Schroder M, Bowie AG. TLR3 in antiviral immunity: key player or bystander? Trends Immunol. 2005;26:462–468.

    Article  PubMed  Google Scholar 

  11. Lim DM, Narasimhan S, Michaylira CZ, Wang ML. TLR3-mediated NF-{kappa}B signaling in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2009;297:G1172–G1180.

    Article  PubMed  CAS  Google Scholar 

  12. Tsuji K, Yamamoto S, Ou W, et al. dsRNA enhances eotaxin-3 production through interleukin-4 receptor upregulation in airway epithelial cells. Eur Respir J. 2005;26:795–803.

    Article  PubMed  CAS  Google Scholar 

  13. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci USA. 2004;101:4250–4255.

    Article  PubMed  CAS  Google Scholar 

  14. Francois F, Roper J, Goodman AJ, et al. The association of gastric leptin with oesophageal inflammation and metaplasia. Gut. 2008;57:16–24.

    Article  PubMed  CAS  Google Scholar 

  15. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–597.

    Article  PubMed  Google Scholar 

  16. Moqbel R, Lacy P. Molecular mechanisms in eosinophil activation. Chem Immunol. 2000;78:189–198.

    Article  PubMed  CAS  Google Scholar 

  17. Rothenberg ME, Spergel JM, Sherrill JD, et al. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat Genet. 2010;42:289–291.

    Article  PubMed  CAS  Google Scholar 

  18. Stoner GD, Kaighn ME, Reddel RR, et al. Establishment and characterization of SV40 T-antigen immortalized human esophageal epithelial cells. Cancer Res. 1991;51:365–371.

    PubMed  CAS  Google Scholar 

  19. Andl CD, Mizushima T, Nakagawa H, et al. Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo. J Biol Chem. 2003;278:1824–1830.

    Article  PubMed  CAS  Google Scholar 

  20. Katayama M, Akaishi T, Nishihira T, Kasai M, Kan M, Yamane I. Primary culture of human esophageal epithelial cells. Tohoku J Exp Med. 1984;143:129–140.

    Article  PubMed  CAS  Google Scholar 

  21. Zboralske FF, Karasek MA. Growth characteristics of human esophageal epithelial cells in primary explant and serial culture. In Vitro. 1984;20:109–118.

    Article  PubMed  CAS  Google Scholar 

  22. Blanchard C, Mingler MK, Vicario M, et al. IL-13 involvement in eosinophilic esophagitis: transcriptome analysis and reversibility with glucocorticoids. J Allergy Clin Immunol. 2007;120:1292–1300.

    Article  PubMed  CAS  Google Scholar 

  23. Vakil N, van Zanten SV, Kahrilas P, et al. The montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol. 2006;101:1900–1920.

    Article  PubMed  Google Scholar 

  24. Sherman PM, Hassall E, Fagundes-Neto U, et al. A global, evidence-based consensus on the definition of gastroesophageal reflux disease in the pediatric population. Am J Gastroenterol. 2009;104:1278–1295.

    Article  PubMed  Google Scholar 

  25. Flo TH, Halaas O, Torp S, et al. Differential expression of toll-like receptor 2 in human cells. J Leukoc Biol. 2001;69:474–481.

    PubMed  CAS  Google Scholar 

  26. Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol. 2000;164:5998–6004.

    PubMed  CAS  Google Scholar 

  27. Sanghavi SK, Reinhart TA. Increased expression of TLR3 in lymph nodes during simian immunodeficiency virus infection: implications for inflammation and immunodeficiency. J Immunol. 2005;175:5314–5323.

    PubMed  CAS  Google Scholar 

  28. Lane EB, Rugg EL, Navsaria H, et al. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature. 1992;356:244–246.

    Article  PubMed  CAS  Google Scholar 

  29. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000;68:7010–7017.

    Article  PubMed  CAS  Google Scholar 

  30. van Aubel RA, Keestra AM, Krooshoop DJ, van Eden W, van Putten JP. Ligand-induced differential cross-regulation of toll-like receptors 2, 4 and 5 in intestinal epithelial cells. Mol Immunol. 2007;44:3702–3714.

    Article  PubMed  Google Scholar 

  31. Mayer AK, Muehmer M, Mages J, et al. Differential recognition of TLR-dependent microbial ligands in human bronchial epithelial cells. J Immunol. 2007;178:3134–3142.

    PubMed  CAS  Google Scholar 

  32. Wang Y, Devkota S, Musch MW, et al. Regional mucosa-associated microbiota determine physiological expression of TLR2 and TLR4 in murine colon. PLoS One. 2010;5:e13607.

    Article  PubMed  Google Scholar 

  33. Sherrill JD, Gao PS, Stucke EM, et al. Variants of thymic stromal lymphopoietin and its receptor associate with eosinophilic esophagitis. J Allergy Clin Immunol. 2010;126:160–165.

    Article  PubMed  CAS  Google Scholar 

  34. Kato A, Favoreto S Jr, Avila PC, Schleimer RP. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol. 2007;179:1080–1087.

    PubMed  CAS  Google Scholar 

  35. Lee KH, Cho KA, Kim JY, et al. Filaggrin knockdown and toll-like receptor 3 (TLR3) stimulation enhanced the production of thymic stromal lymphopoietin (TSLP) from epidermal layers. Exp Dermatol. 2011;20:149–151.

    Article  PubMed  CAS  Google Scholar 

  36. Vu AT, Baba T, Chen X, et al. Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the toll-like receptor 2-toll-like receptor 6 pathway. J Allergy Clin Immunol. 2010;126:985–993.

    Article  PubMed  CAS  Google Scholar 

  37. Davicino R, Martinez C, Mattar MA, et al. Larrea divaricata Cav (jarilla): production of superoxide anion, hydrogen peroxide and expression of zymosan receptors. Immunopharmacol Immunotoxicol. 2008;30:489–501.

    Article  PubMed  CAS  Google Scholar 

  38. Mullaly SC, Kubes P. Mast cell-expressed complement receptor, not TLR2, is the main detector of zymosan in peritonitis. Eur J Immunol. 2007;37:224–234.

    Article  PubMed  CAS  Google Scholar 

  39. Martinelli C, Reichhart JM. Evolution and integration of innate immune systems from fruit flies to man: lessons and questions. J Endotoxin Res. 2005;11:243–248.

    PubMed  CAS  Google Scholar 

  40. Beutler B. Innate immune sensing of microbial infection: the mechanism and the therapeutic challenge. Wien Med Wochenschr. 2002;152:547–551.

    Article  PubMed  CAS  Google Scholar 

  41. Khailova L, Mount Patrick SK, Arganbright KM, Halpern MD, Kinouchi T, Dvorak B. Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1118–G1127.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from Kingston General Hospital and the Queen’s University Gastrointestinal Diseases Research Unit. The research is funded by Physicians’ Services Incorporated (PSI) Grant: PAED-237-09.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Justinich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulder, D.J., Lobo, D., Mak, N. et al. Expression of Toll-Like Receptors 2 and 3 on Esophageal Epithelial Cell Lines and on Eosinophils During Esophagitis. Dig Dis Sci 57, 630–642 (2012). https://doi.org/10.1007/s10620-011-1907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1907-4

Keywords

Navigation