Skip to main content
Log in

Intercellular Space Volume Is Mainly Increased in the Basal Layer of Esophageal Squamous Epithelium in Patients with GERD

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aims

At present, the dilation of esophageal intercellular spaces (ICS) is considered an early morphologic marker of acid damage in patients with GERD. Nevertheless, previous electron microscopic (EM) studies had focused only on the suprabasal layer of squamous epithelium or did not nearly specify which layer of squamous epithelium was studied. Therefore, we aimed to assess the volumetric amount of the ICS in all layers of SE in patients with GERD.

Methods

In this study, 48 patients were prospectively included (NERD = 18, ERD = 17; Barrett′s esophagus = 5, controls = 8). All patients with ERD and NERD had typical reflux symptoms, as assessed by a valid GERD questionnaire. ICS volume was assessed by electron microscopy in the superficial, prickle cell, and basal layers of esophageal squamous epithelium using the method of Weibel.

Results

ERD was associated with increased ICS volume in the basal layer (LA-A, p = 0.038; LA-B, p = 0.005) and prickle cell layer (LA-A, p = 0.006; LA-B, p = 0.007) as compared to controls. Comparisons between NERD and ERD patients revealed more dilated ICS in the basal layer (LA-B, p = 0.007), prickle cell layer (LA-A, p = 0.008; LA-B, p = 0.001) and superficial layer (LA-B, p = 0.018) in patients with ERD.

Conclusions

Not only the diameter but also the volume of the ICS is increased in patients with GERD. Furthermore, the dilation of ICS is present in all three layers of the SE, being more pronounced in the basal layer. These findings support the concept that the impairment of the esophagus begins in the deeper parts of the esophageal epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wahlqvist P, Reilly MC, Barkun A. Systematic review: the impact of gastro-oesophageal reflux disease on work productivity. Aliment Pharmacol Ther. 2006;24:259–272.

    Article  PubMed  CAS  Google Scholar 

  2. Spechler SJ. Epidemiology and natural history of gastro-oesophageal reflux disease. Digestion. 1992;51:24–29.

    Article  PubMed  Google Scholar 

  3. Vakil N, van Zanten SV, Kahrilas P, et al. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol. 2006;101:1900–1920.

    Article  PubMed  Google Scholar 

  4. Wienbeck M, Barnert J. Epidemiology of reflux disease and reflux esophagitis. Scand J Gastroenterol. 1989;156:7–13.

    Article  CAS  Google Scholar 

  5. Vieth M, Peitz U, Labenz J, et al. What parameters are relevant for the histological diagnosis of gastroesophageal reflux disease without Barrett’s mucosa? Dig Dis. 2004;22:196–201.

    Article  PubMed  CAS  Google Scholar 

  6. Caviglia R, Ribolsi M, Gentile M, et al. Dilated intercellular spaces and acid reflux at the distal and proximal oesophagus in patients with non-erosive gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2007;25:629–636.

    Article  PubMed  CAS  Google Scholar 

  7. De Hertogh G, Ectors N, Van Eyken P, et al. Review article: the nature of oesophageal injury in gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2006;24:17–26.

    Article  PubMed  Google Scholar 

  8. Calabrese C, Fabbri A, Bortolotti M, et al. Dilated intercellular spaces as a marker of oesophageal damage: comparative results in gastro-oesophageal reflux disease with or without bile reflux. Aliment Pharmacol Ther. 2003;18:525–532.

    Article  PubMed  CAS  Google Scholar 

  9. Ravelli AM, Villanacci V, Ruzzenenti N, et al. Dilated intercellular spaces: a major morphological feature of esophagitis. J Pediatr Gastroenterol Nutr. 2006;42:510–515.

    Article  PubMed  Google Scholar 

  10. Hopwood D, Logan KR, Bouchier IA. The electron microscopy of normal human oesophageal epithelium. Virchows Arch B Cell Pathol. 1978;26:345–358.

    PubMed  CAS  Google Scholar 

  11. Lynn RB. Mechanisms of esophageal pain. Am J Med. 1992;92:11–19.

    Article  Google Scholar 

  12. Tobey NA, Hosseini SS, Argote CM, et al. Dilated intercellular spaces and shunt permeability in nonerosive acid-damaged esophageal epithelium. Am J Gastroenterol. 2004;99:13–22.

    Article  PubMed  CAS  Google Scholar 

  13. Farré R, De Vos R, Geboes K, et al. Critical role of stress in increased oesophageal mucosa permeability and dilated intercellular spaces. Gut. 2007;56:1191–1197.

    Article  PubMed  Google Scholar 

  14. Shaw MJ, Talley NJ, Beebe TJ, et al. Initial validation of a diagnostic questionnaire for gastroesophageal reflux disease. Am J Gastroenterol. 2001;96:52–57.

    Article  PubMed  CAS  Google Scholar 

  15. Lundell LR, Dent J, Bennett JR, et al. Endoscopic assessment of oesophagitis: clinical and functional correlates and further validation of the Los Angeles classification. Gut. 1999;45:172–180.

    Article  PubMed  CAS  Google Scholar 

  16. Sampliner RE. Practice parameters committee of the American College of Gastroenterology. Am J Gastroenterol. 2002;97:1888–1895.

    Article  PubMed  Google Scholar 

  17. Ismail-Beigi F, Horton PF, Pope CE. Histological consequences of gastroesophageal reflux in man. Gastroenterology. 1970;58:163–174.

    PubMed  CAS  Google Scholar 

  18. Weibel ER, Kistler GS, Scherle WF. Practical stereological methods for morphometric cytology. J Cell Biol. 1966;30:23–38.

    Article  PubMed  CAS  Google Scholar 

  19. Weibel ER, Hsia CC, Ochs M. How much is there really? Why stereology is essential in lung morphometry. J Appl Physiol. 2007;102:459–467.

    Article  PubMed  Google Scholar 

  20. Solcia E, Villani L, Luinetti O, et al. Altered intercellular glycoconjugates and dilated intercellular spaces of esophageal epithelium in reflux disease. Virchows Arch. 2000;436:207–216.

    Article  PubMed  CAS  Google Scholar 

  21. Caviglia R, Ribolsi M, Maggiano N, et al. Dilated intercellular spaces of esophageal epithelium in nonerosive reflux disease patients with physiological esophageal acid exposure. Am J Gastroenterol. 2005;100:543–548.

    Article  PubMed  Google Scholar 

  22. Hopwood D, Milne G, Logan KR. Electron microscopic changes in human oesophageal epithelium in oesophagitis. J Pathol. 1979;129:161–167.

    Article  PubMed  CAS  Google Scholar 

  23. Barlow WJ, Orlando RC. The pathogenesis of heartburn in nonerosive reflux disease: a unifying hypothesis. Gastroenterology. 2005;128:771–778.

    Article  PubMed  Google Scholar 

  24. Tobey NA, Carson JL, Alkiek RA, et al. Dilated intercellular spaces: a morphological feature of acid reflux–damaged human esophageal epithelium. Gastroenterology. 1996;111:1200–1205.

    Article  PubMed  CAS  Google Scholar 

  25. Calabrese C, Bortolotti M, Fabbri A, et al. Reversibility of GERD ultrastructural alterations and relief of symptoms after omeprazole treatment. Am J Gastroenterol. 2005;100:537–542.

    Article  PubMed  CAS  Google Scholar 

  26. Guillem PG. How to make a Barrett esophagus: pathophysiology of columnar metaplasia of the esophagus. Dig Dis Sci. 2005;50:415–424.

    Article  PubMed  Google Scholar 

  27. Labenz J, Nocon M, Lind T, et al. Prospective follow-up data from the ProGERD study suggest that GERD is not a categorial disease. Am J Gastroenterol. 2006;101:2457–2462.

    PubMed  Google Scholar 

  28. Souza RF, Huo X, Mittal V, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology. 2009;137:1776–1784.

    Article  PubMed  CAS  Google Scholar 

  29. Richardson KL, Jarett L, Finke EH. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960;35:313–323.

    PubMed  CAS  Google Scholar 

  30. Nyengaard JR, Gundersen HJG. The isector: a simple and direct method for generating isotropic, uniform random sections from small specimens. J Microsc. 1992;165:427–431.

    Google Scholar 

  31. Tobey NA, Gambling TM, Vanegas XC, et al. Physicochemical basis for dilated intercellular spaces in non-erosive acid-damaged rabbit esophageal epithelium. Dis Esophagus. 2008;21:757–764.

    Article  PubMed  CAS  Google Scholar 

  32. Alvaro-Villegas JC, Sobrino-Cossío S, Hernández-Guerrero A, et al. Dilated intercellular spaces in subtypes of gastroesophagic reflux disease. Rev Esp Enferm Dig. 2010;102:302–307.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the endoscopy team for their technical assistance. The study was supported by the NBL-3 program of the “Bundesministerium für Forschung und Technik” (01ZZ0407/PFG1) and the “LOM-Program” of the Medical Faculty of the Otto-von-Guericke University Magdeburg.

Conflicts of interest

None of the authors has any conflicts of interest related to this work to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Malfertheiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, H., Mönkemüller, K., Fry, L.C. et al. Intercellular Space Volume Is Mainly Increased in the Basal Layer of Esophageal Squamous Epithelium in Patients with GERD. Dig Dis Sci 56, 1404–1411 (2011). https://doi.org/10.1007/s10620-010-1458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1458-0

Keywords

Navigation