Skip to main content

Advertisement

Log in

Musashi1 and Hairy and Enhancer of Split 1 High Expression Cells Derived from Embryonic Stem Cells Enhance the Repair of Small-Intestinal Injury in the Mouse

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Embryonic stem cells have great plasticity. In this study, we repaired impaired small intestine by transplanting putative intestinal epithelial stem cells (Musashi1 and hairy and enhancer of split 1 high expression cells) derived from embryonic stem cells.

Methods

The differentiation of definitive endoderm in embryoid bodies, derived from male ES-E14TG2a cells by the hanging-drop method, was monitored to define a time point for maximal induction of putative intestinal epithelial stem cells by epidermal growth factor. Furthermore, to evaluate the regenerative potential of intestinal epithelium, these putative stem cells were engrafted into NOD/SCID mice and female mice with enteritis. Donor cells were located by SRY DNA in situ hybridization.

Results

The results revealed that definitive endodermal markers were highly expressed in 5-day embryoid bodies. These embryoid body cells were induced into putative intestinal epithelial stem cells on the 5th day of epidermal growth factor administration. Grafts from these cells consisted of adenoid structures and nonspecific structural cells with strong expression of small-intestinal epithelial cell markers. In situ hybridization revealed that the donor cells could specifically locate in damaged intestinal epithelium, contribute to epithelial structures, and enhance regeneration.

Conclusions

In conclusion, the Musashi1 and hairy and enhancer of split 1 high expression cells, derived from mouse embryonic stem cells, locate predominantly in impaired small-intestinal epithelium after transplantation and contribute to epithelial regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poulsom R, Alison MR, Forbes SJ, Wright NA. Adult stem cell plasticity. J Pathol. 2002;197:441–456.

    Article  PubMed  Google Scholar 

  2. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003;102:3483–3493.

    Article  PubMed  CAS  Google Scholar 

  3. Krause DS. Plasticity of marrow-derived stem cells. Gene Ther. 2002;9:754–758.

    Article  PubMed  CAS  Google Scholar 

  4. Borue X, Lee S, Grove J, et al. Bone marrow-derived cells contribute to epithelial engraftment during wound healing. Am J Pathol. 2004;165:1767–1772.

    Article  PubMed  Google Scholar 

  5. Tang Y, Yasuhara T, Hara K, et al. Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell Transplant. 2007;16:159–169.

    PubMed  Google Scholar 

  6. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000;6:1229–1234.

    Article  PubMed  CAS  Google Scholar 

  7. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–705.

    Article  PubMed  CAS  Google Scholar 

  8. Brittan M, Hunt T, Jeffery R, et al. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut. 2002;50:752–757.

    Article  PubMed  CAS  Google Scholar 

  9. Brittan M, Chance V, Elia G, et al. A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts. Gastroenterology. 2005;128:1984–1995.

    Article  PubMed  Google Scholar 

  10. O’Shea KS. Self-renewal vs. differentiation of mouse embryonic stem cells. Biol Reprod. 2004;71:1755–1765.

    Article  PubMed  Google Scholar 

  11. Wright NA. Epithelial stem cell repertoire in the gut: clues to the origin of cell lineages, proliferative units and cancer. Int J Exp Pathol. 2000;81:117–143.

    Article  PubMed  CAS  Google Scholar 

  12. Day RM. Epithelial stem cells and tissue engineered intestine. Curr Stem Cell Res Ther. 2006;1:113–120.

    Article  PubMed  CAS  Google Scholar 

  13. Kubo A, Shinozaki K, Shannon JM, et al. Development of definitive endoderm from embryonic stem cells in culture. Development. 2004;131:1651–1662.

    Article  PubMed  CAS  Google Scholar 

  14. Gouon-Evans V, Boussemart L, Gadue P, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24:1402–1411.

    Article  PubMed  CAS  Google Scholar 

  15. Lewis SL, Tam PP. Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev Dyn. 2006;235:2315–2329.

    Article  PubMed  Google Scholar 

  16. Yasunaga M, Tada S, Torikai-Nishikawa S, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol. 2005;23:1542–1550.

    Article  PubMed  CAS  Google Scholar 

  17. Abud HE, Watson N, Heath JK. Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Exp Cell Res. 2005;303:252–262.

    Article  PubMed  CAS  Google Scholar 

  18. Berlanga-Acosta J, Playford RJ, Mandir N, Goodlad RA. Gastrointestinal cell proliferation and crypt fission are separate but complementary means of increasing tissue mass following infusion of epidermal growth factor in rats. Gut. 2001;48:803–807.

    Article  PubMed  CAS  Google Scholar 

  19. Asai R, Okano H, Yasugi S. Correlation between Musashi-1 and c-hairy-1 expression and cell proliferation activity in the developing intestine and stomach of both chicken and mouse. Dev Growth Differ. 2005;47:501–510.

    Article  PubMed  CAS  Google Scholar 

  20. Kayahara T, Sawada M, Takaishi S, et al. Candidate markers for stem and early progenitor cells, Musashi-1 and Hes-1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett. 2003;535:131–135.

    Article  PubMed  CAS  Google Scholar 

  21. Potten CS, Booth C, Tudor GL, et al. Identification of a putative intestinal stem cell and early lineage marker; Musashi-1. Differentiation. 2003;71:28–41.

    Article  PubMed  CAS  Google Scholar 

  22. Morita H, Mazerbourg S, Bouley DM, et al. Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension. Mol Cell Biol. 2004;24:9736–9743.

    Article  PubMed  CAS  Google Scholar 

  23. Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007.

    Article  PubMed  CAS  Google Scholar 

  24. Zhu L, Gibson P, Currle DS, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457:603–607.

    Article  PubMed  CAS  Google Scholar 

  25. Montgomery RK, Breault DT. Small intestinal stem cell markers. J Anat. 2008;213:52–58.

    Article  PubMed  CAS  Google Scholar 

  26. Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 2008;40:915–920.

    Article  PubMed  CAS  Google Scholar 

  27. Mutoh H, Sakamoto H, Hayakawa H, et al. The intestine-specific homeobox gene Cdx2 induces expression of the basic helix-loop-helix transcription factor Math1. Differentiation. 2006;74:313–321.

    Article  PubMed  CAS  Google Scholar 

  28. van der Flier LG, van Gijn ME, Hatzis P, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell. 2009;136:903–912.

    Article  PubMed  Google Scholar 

  29. Smith AG, Hooper ML. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev Biol. 1987;121:1–9.

    Article  PubMed  CAS  Google Scholar 

  30. Dekaney CM, Rodriguez JM, Graul MC, Henning SJ. Isolation and characterization of a putative intestinal stem cell fraction from mouse jejunum. Gastroenterology. 2005;129:1567–1580.

    Article  PubMed  CAS  Google Scholar 

  31. Jenkins SL, Wang J, Vazir M, et al. Role of passive and adaptive immunity in influencing enterocyte-specific gene expression. Am J Physiol Gastrointest Liver Physiol. 2003;285:G714–G725.

    PubMed  CAS  Google Scholar 

  32. Mossman AK, Sourris K, Ng E, Stanley EG, Elefanty AG. Mixl1 and oct4 proteins are transiently co-expressed in differentiating mouse and human embryonic stem cells. Stem Cells Dev. 2005;14:656–663.

    Article  PubMed  CAS  Google Scholar 

  33. Do JT, Schöler HR. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells. 2004;22:941–949.

    Article  PubMed  CAS  Google Scholar 

  34. Schmittgen TD, Zakrajsek BA, Mills AG, Gorn V, Singer MJ, Reed MW. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem. 2000;285:194–204.

    Article  PubMed  CAS  Google Scholar 

  35. Park PO, Haglund U, Bulkley GB, Fält K. The sequence of development of intestinal tissue injury after strangulation ischemia and reperfusion. Surgery. 1990;107:574–580.

    PubMed  CAS  Google Scholar 

  36. Higashiyama S, Iwabuki H, Morimoto C, Hieda M, Inoue H, Matsushita N. Membrane-anchored growth factors, the epidermal growth factor family: beyond receptor ligands. Cancer Sci. 2008;99:214–220.

    Article  PubMed  CAS  Google Scholar 

  37. Beck F, Stringer EJ. The role of Cdx genes in the gut and in axial development. Biochem Soc Trans. 2010;38:353–357.

    Article  PubMed  CAS  Google Scholar 

  38. Quinlan JM, Yu WY, Hornsey MA, Tosh D, Slack JM. In vitro culture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes. BMC Dev Biol. 2006;6:24.

    Article  PubMed  Google Scholar 

  39. Jessup JM, Lavin PT, Andrews CW Jr, et al. Sucrase-isomaltase is an independent prognostic marker for colorectal carcinoma. Dis Colon Rectum. 1995;38:1257–1264.

    Article  PubMed  CAS  Google Scholar 

  40. Ogata H, Inoue N, Podolsky DK. Identification of a goblet cell-specific enhancer element in the rat intestinal trefoil factor gene promoter bound by a goblet cell nuclear protein. J Biol Chem. 1998;273:3060–3067.

    Article  PubMed  CAS  Google Scholar 

  41. Bry L, Falk P, Huttner K, Ouellette A, Midtvedt T, Gordon JI. Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc Natl Acad Sci USA. 1994;91:10335–10339.

    Article  PubMed  CAS  Google Scholar 

  42. Qian J, Hickey WF, Angeletti RH. Neuroendocrine cells in intestinal lamina propria. Detection with antibodies to chromogranin A. J Neuroimmunol. 1988;17:159–165.

    Article  PubMed  CAS  Google Scholar 

  43. Torihashi S, Kuwahara M, Ogaeri T, Zhu P, Kurahashi M, Fujimoto T. Gut-like structures from mouse embryonic stem cells as an in vitro model for gut organogenesis preserving developmental potential after transplantation. Stem Cells. 2006;24:2618–2626.

    Article  PubMed  CAS  Google Scholar 

  44. Torihashi S. Formation of gut-like structures in vitro from mouse embryonic stem cells. Methods Mol Biol. 2006;330:279–285.

    PubMed  Google Scholar 

  45. Kuwahara M, Ogaeri T, Matsuura R, Kogo H, Fujimoto T, Torihashi S. In vitro organogenesis of gut-like structures from mouse embryonic stem cells. Neurogastroenterol Motil. 2004;16(Suppl 1):14–18.

    Article  PubMed  Google Scholar 

  46. Yamada T, Yoshikawa M, Takaki M, et al. In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells. 2002;20:41–49.

    Article  PubMed  Google Scholar 

  47. Kedinger M, Duluc I, Fritsch C, Lorentz O, Plateroti M, Freund JN. Intestinal epithelial-mesenchymal cell interactions. Ann N Y Acad Sci. 1998;859:1–17.

    Article  PubMed  CAS  Google Scholar 

  48. Hermiston ML, Wong MH, Gordon JI. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev. 1996;10:985–996.

    Article  PubMed  CAS  Google Scholar 

  49. Hall PA, Coates PJ, Ansari B, Hopwood D. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci. 1994;107:3569–3577.

    PubMed  CAS  Google Scholar 

  50. Brittan M, Wright NA. Gastrointestinal stem cells. J Pathol. 2002;197:492–509.

    Article  PubMed  Google Scholar 

  51. Threadgill DW, Dlugosz AA, Hansen LA, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995;269:230–234.

    Article  PubMed  CAS  Google Scholar 

  52. Foltzer-Jourdainne C, Garaud JC, Nsi-Emvo E, Raul F. Epidermal growth factor and the maturation of intestinal sucrase in suckling rats. Am J Physiol. 1993;265(3 Pt 1):G459–G466.

    PubMed  CAS  Google Scholar 

  53. Miettinen PJ, Berger JE, Meneses J, et al. Epithelial immaturity and multiorgan failure in mice lacking epidermal growth factor receptor. Nature. 1995;376:337–341.

    Article  PubMed  CAS  Google Scholar 

  54. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev. 2006;7:505–516.

    Article  CAS  Google Scholar 

  55. Raji B, Dansault A, Leemput J, et al. The RNA-binding protein Musashi-1 is produced in the developing and adult mouse eye. Mol Vis. 2007;13:1412–1427.

    PubMed  CAS  Google Scholar 

  56. Ratti A, Fallini C, Cova L, et al. A role for the ELAV RNA-binding proteins in neural stem cells: stabilization of Msi1 mRNA. J Cell Sci. 2006;119:1442–1452.

    Article  PubMed  CAS  Google Scholar 

  57. Wang XY, Yin Y, Yuan H, Sakamaki T, Okano H, Glazer RI. Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and notch pathways. Mol Cell Biol. 2008;28:3589–3599.

    Article  PubMed  CAS  Google Scholar 

  58. Suh JH, Lee HW, Lee JW, Kim JB. Hes1 stimulates transcriptional activity of Runx2 by increasing protein stabilization during osteoblast differentiation. Biochem Biophys Res Commun. 2008;367:97–102.

    Article  PubMed  CAS  Google Scholar 

  59. Katoh M, Katoh M. Integrative genomic analyses on HES/HEY family: notch-independent HES1, HES3 transcription in undifferentiated ES cells, and notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer. Int J Oncol. 2007;31:461–466.

    PubMed  CAS  Google Scholar 

  60. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian notch. Nature. 1995;377:355–358.

    Article  PubMed  CAS  Google Scholar 

  61. Tsuda L, Nagaraj R, Zipursky SL, Banerjee U. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell. 2002;110:625–637.

    Article  PubMed  CAS  Google Scholar 

  62. Sotillos S, De Celis JF. Interactions between the Notch, EGFR, and decapentaplegic signaling pathways regulate vein differentiation during Drosophila pupal wing development. Dev Dyn. 2005;232:738–752.

    Article  PubMed  CAS  Google Scholar 

  63. Jarriault S, Le Bail O, Hirsinger E, et al. Delta-1 activation of notch-1 signaling results in HES-1 transactivation. Mol Cell Biol. 1998;18:7423–7431.

    PubMed  CAS  Google Scholar 

  64. Yu T, Chen QK, Gong Y, Xia ZS, Royal CR, Huang KH. Higher expression patterns of the intestinal stem cell markers Musashi-1 and hairy and enhancer of split 1 and their correspondence with proliferation patterns in the mouse jejunum. Med Sci Monit. 2010;16:BR68–BR74.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by National Natural Science Foundation of China (No. 30470778 and No. 30670950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Kui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, T., Lan, SY., Wu, B. et al. Musashi1 and Hairy and Enhancer of Split 1 High Expression Cells Derived from Embryonic Stem Cells Enhance the Repair of Small-Intestinal Injury in the Mouse. Dig Dis Sci 56, 1354–1368 (2011). https://doi.org/10.1007/s10620-010-1441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1441-9

Keywords

Navigation