Skip to main content

Advertisement

Log in

Sphingosine-1-Phosphate Regulates the Expression of Adherens Junction Protein E-Cadherin and Enhances Intestinal Epithelial Cell Barrier Function

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The regulation of intestinal barrier permeability is important in the maintenance of normal intestinal physiology. Sphingosine-1-phosphate (S1P) has been shown to play a pivotal role in enhancing barrier function in several non-intestinal tissues. The current study determined whether S1P regulated function of the intestinal epithelial barrier by altering expression of E-cadherin, an important protein in adherens junctions.

Methods

Studies were performed upon cultured differentiated IECs (IEC-Cdx2L1 line) using standard techniques.

Results

S1P treatment significantly increased levels of E-cadherin protein and mRNA in intestinal epithelial cells (IECs) and also led to E-cadherin localizing strongly to the cell–cell border. S1P also improved the barrier function as indicated by a decrease in 14C-mannitol paracellular permeability and an increase in transepithelial electrical resistance (TEER) in vitro.

Conclusions

These results indicate that S1P increases levels of E-cadherin, both in cellular amounts and at the cell–cell junctions, and leads to improved barrier integrity in cultured intestinal epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carneiro-Filho BA, Lima IP, Araujo DH, et al. Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. Dig Dis Sci. 2004;49:65–72.

    Article  PubMed  CAS  Google Scholar 

  2. Lima AA, Silva TM, Gifoni AM, et al. Mucosal injury and disruption of intestinal barrier function in HIV-infected individuals with and without diarrhea and cryptosporidiosis in northeast Brazil. Am J Gastroenterol. 1997;92:1861–1866.

    PubMed  CAS  Google Scholar 

  3. Cereijido M, Shoshani L, Contreras RG. Molecular physiology and pathophysiology of tight junctions. I. Biogenesis of tight junctions and epithelial polarity. Am J Physiol Gastrointest Liver Physiol. 2000;279:G477–G482.

    PubMed  CAS  Google Scholar 

  4. Collares-Buzato CB, McEwan GT, Jepson MA, et al. Paracellular barrier and junctional protein distribution depend on basolateral extracellular Ca2+ in cultured epithelia. Biochim Biophys Acta. 1222;147–158:1994.

    Google Scholar 

  5. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84:345–357.

    Article  PubMed  CAS  Google Scholar 

  6. Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol. 1998;60:121–142.

    Article  PubMed  CAS  Google Scholar 

  7. Takeichi M. Cadherins: a molecular family important in selective cell–cell adhesion. Annu Rev Biochem. 1990;59:237–252.

    Article  PubMed  CAS  Google Scholar 

  8. Yap AS, Brieher WM, Gumbiner BM. Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol. 1997;13:119–146.

    Article  PubMed  CAS  Google Scholar 

  9. Cereijido M, Valdés J, Shoshani L, et al. Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol. 1998;60:161–177.

    Article  PubMed  CAS  Google Scholar 

  10. Gumbiner B, Stevenson B, Grimaldi A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol. 1988;107:1575–1587.

    Article  PubMed  CAS  Google Scholar 

  11. Madara JL. Regulation of the movement of solutes across tight junctions. Annu Rev Physiol. 1998;60:143–159.

    Article  PubMed  CAS  Google Scholar 

  12. Nusrat A, Parkos CA, Verkade P, et al. Tight junctions are membrane microdomains. J Cell Sci. 2000;113(Pt 10):1771–1781.

    PubMed  CAS  Google Scholar 

  13. Adams CL, Nelson WJ, Smith SJ. Quantitative analysis of cadherin–catenin–actin reorganization during development of cell–cell adhesion. J Cell Biol. 1996;135:1899–1911.

    Article  PubMed  CAS  Google Scholar 

  14. Angres B, Barth A, Nelson WJ. Mechanism for transition from initial to stable cell–cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J Cell Biol. 1996;134:549–557.

    Article  PubMed  CAS  Google Scholar 

  15. Hanby AM, Chinery R, Poulsom R, et al. Downregulation of E-cadherin in the reparative epithelium of the human gastrointestinal tract. Am J Pathol. 1996;148:723–729.

    PubMed  CAS  Google Scholar 

  16. Shore EM, Nelson WJ. Biosynthesis of the cell adhesion molecule uvomorulin (E-cadherin) in Madin–Darby canine kidney epithelial cells. J Biol Chem. 1991;266:19672–19680.

    PubMed  CAS  Google Scholar 

  17. Angst BD, Marcozzi C, Magee AI. The cadherin superfamily. J Cell Sci. 2001;114:625–626.

    PubMed  CAS  Google Scholar 

  18. Rimm DL, Koslov ER, Kebriaei P, et al. Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA. 1995;92:8813–8817.

    Article  PubMed  CAS  Google Scholar 

  19. Troxell ML, Chen YT, Cobb N, et al. Cadherin function in junctional complex rearrangement and posttranslational control of cadherin expression. Am J Physiol. 1999;276:C404–C418.

    PubMed  CAS  Google Scholar 

  20. Weiss EE, Kroemker M, Rüdiger AH, et al. Vinculin is part of the cadherin–catenin junctional complex: complex formation between alpha-catenin and vinculin. J Cell Biol. 1998;141:755–764.

    Article  PubMed  CAS  Google Scholar 

  21. Dudek SM, Jacobson JR, Chiang ET, et al. Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem. 2004;279:24692–24700.

    Article  PubMed  CAS  Google Scholar 

  22. English D, Kovala AT, Welch Z, et al. Induction of endothelial cell chemotaxis by sphingosine 1-phosphate and stabilization of endothelial monolayer barrier function by lysophosphatidic acid, potential mediators of hematopoietic angiogenesis. J Hematother Stem Cell Res. 1999;8:627–634.

    Article  PubMed  CAS  Google Scholar 

  23. Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood. 2005;105:3178–3184.

    Article  PubMed  CAS  Google Scholar 

  24. McVerry BJ, Garcia JG. Endothelial cell barrier regulation by sphingosine 1-phosphate. J Cell Biochem. 2004;92:1075–1085.

    Article  PubMed  CAS  Google Scholar 

  25. Siess W. Athero- and thrombogenic actions of lysophosphatidic acid and sphingosine-1-phosphate. Biochim Biophys Acta. 2002;1582:204–215.

    PubMed  CAS  Google Scholar 

  26. Singleton PA, Dudek SM, Chiang ET, et al. Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J. 2005;19:1646–1656.

    Article  PubMed  CAS  Google Scholar 

  27. Singleton PA, Dudek SM, Ma SF, et al. Transactivation of sphingosine 1-phosphate receptors is essential for vascular barrier regulation: novel role for hyaluronan and cd44 receptor family. J Biol Chem. 2006;281:34381–34393.

    Article  PubMed  CAS  Google Scholar 

  28. English D, Welch Z, Kovala AT, et al. Sphingosine 1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J. 2000;14:2255–2265.

    Article  PubMed  CAS  Google Scholar 

  29. Nugent D, Xu Y. Sphingosine-1-phosphate: characterization of its inhibition of platelet aggregation. Platelets. 2000;11:226–232.

    Article  PubMed  CAS  Google Scholar 

  30. Ryu Y, Takuwa N, Sugimoto N, et al. Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res. 2002;90:325–332.

    Article  PubMed  CAS  Google Scholar 

  31. Schaphorst KL, Chiang E, Jacobs KN, et al. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am J Physiol Lung Cell Mol Physiol. 2003;285:L258–L267.

    PubMed  CAS  Google Scholar 

  32. Björklund S, Palmberg S, Rask S, et al. Effects of sphingosine 1-phosphate on calcium signaling, proliferation and S1P2 receptor expression in PC Cl3 rat thyroid cells. Mol Cell Endocrinol. 2005;231:65–74.

    Article  PubMed  Google Scholar 

  33. Chen PF, Chin TY, Chueh SH. Ca2+ signaling induced by sphingosylphosphorylcholine and sphingosine 1-phosphate via distinct mechanisms in rat glomerular mesangial cells. Kidney Int. 1998;54:1470–1483.

    Article  PubMed  CAS  Google Scholar 

  34. Dahm F, Nocito A, Bielawska A, et al. Distribution and dynamic changes of sphingolipids in blood in response to platelet activation. J Thromb Haemost. 2006;4:2704–2709.

    Article  PubMed  CAS  Google Scholar 

  35. Davaille J, Li L, Mallat A, et al. Sphingosine 1-phosphate triggers both apoptotic and survival signals for human hepatic myofibroblasts. J Biol Chem. 2002;277:37323–37330.

    Article  PubMed  CAS  Google Scholar 

  36. Kaneko T, Murakami T, Kawana H, et al. Sphingosine-1-phosphate receptor agonists suppress concanavalin A-induced hepatic injury in mice. Biochem Biophys Res Commun. 2006;345:85–92.

    Article  PubMed  CAS  Google Scholar 

  37. Karliner JS, Honbo N, Summers K, et al. The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. J Mol Cell Cardiol. 2001;33:1713–1717.

    Article  PubMed  CAS  Google Scholar 

  38. Laychock SG, Sessanna SM, Lin MH, et al. Sphingosine 1-phosphate affects cytokine-induced apoptosis in rat pancreatic islet beta-cells. Endocrinology. 2006;147:4705–4712.

    Article  PubMed  CAS  Google Scholar 

  39. Peng X, Hassoun PM, Sammani S, et al. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med. 2004;169:1245–1251.

    Article  PubMed  Google Scholar 

  40. Finigan JH, Dudek SM, Singleton PA, et al. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem. 2005;280:17286–17293.

    Article  PubMed  CAS  Google Scholar 

  41. McVerry BJ, Garcia JG. In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cell Signal. 2005;17:131–139.

    Article  PubMed  CAS  Google Scholar 

  42. Mehta D, Konstantoulaki M, Ahmmed GU, et al. Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells. J Biol Chem. 2005;280:17320–17328.

    Article  PubMed  CAS  Google Scholar 

  43. Shikata Y, Birukov KG, Garcia JG. S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. J Appl Physiol. 2003;94:1193–1203.

    PubMed  CAS  Google Scholar 

  44. Lee M-J, Thangada S, Claffey KP, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999;99:301–312.

    Article  PubMed  CAS  Google Scholar 

  45. Lee M-J, Van Brocklyn JR, Thangada S, et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998;279:1552–1555.

    Article  PubMed  CAS  Google Scholar 

  46. Thamilselvan V, Li W, Sumpio BE, et al. Sphingosine-1-phosphate stimulates human Caco-2 intestinal epithelial proliferation via p38 activation and activates ERK by an independent mechanism. In Vitro Cell Dev Biol Anim. 2002;38:246–253.

    Article  PubMed  CAS  Google Scholar 

  47. Yatomi Y, Welch RJ, Igarashi Y. Distribution of sphingosine 1-phosphate, a bioactive sphingolipid, in rat tissues. FEBS Lett. 1997;404:173–174.

    Article  PubMed  CAS  Google Scholar 

  48. Kohno M, Momoi M, Oo ML, et al. Intracellular role for sphingosine kinase 1 in intestinal adenoma cell proliferation. Mol Cell Biol. 2006;26:7211–7223.

    Article  PubMed  CAS  Google Scholar 

  49. Suh E, Traber PG. An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol. 1996;16:619–625.

    PubMed  CAS  Google Scholar 

  50. Guo X, Rao JN, Liu L, et al. Polyamines are necessary for synthesis and stability of occludin protein in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1159–G1169.

    Article  PubMed  CAS  Google Scholar 

  51. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

    Article  PubMed  CAS  Google Scholar 

  52. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.

    Article  PubMed  CAS  Google Scholar 

  53. Vielkind U, Swierenga SH. A simple fixation procedure for immunofluorescent detection of different cytoskeletal components within the same cell. Histochemistry. 1989;91:81–88.

    Article  PubMed  CAS  Google Scholar 

  54. Guo X, Rao JN, Liu L, et al. Polyamines regulate beta-catenin tyrosine phosphorylation via Ca(2+) during intestinal epithelial cell migration. Am J Physiol Cell Physiol. 2002;283:C722–C734.

    PubMed  CAS  Google Scholar 

  55. Wang JY, McCormack SA, Johnson LR. Role of nonmuscle myosin II in polyamine-dependent intestinal epithelial cell migration. Am J Physiol. 1996;270:G355–G362.

    PubMed  CAS  Google Scholar 

  56. Rao JN, Li L, Golovina VA, et al. Ca2+-RhoA signaling pathway required for polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol. 2001;280:C993–C1007.

    PubMed  CAS  Google Scholar 

  57. Wang JY, Wang J, Golovina VA, et al. Role of K(+) channel expression in polyamine-dependent intestinal epithelial cell migration. Am J Physiol Cell Physiol. 2000;278:C303–C314.

    PubMed  CAS  Google Scholar 

  58. Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev. 1997;77:901–930.

    PubMed  CAS  Google Scholar 

  59. Wong V, Gumbiner BM. A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol. 1997;136:399–409.

    Article  PubMed  CAS  Google Scholar 

  60. Balda MS, Whitney JA, Flores C, et al. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical–basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol. 1996;134:1031–1049.

    Article  PubMed  CAS  Google Scholar 

  61. Liu TS, Musch MW, Sugi K, et al. Protective role of HSP72 against Clostridium difficile toxin A-induced intestinal epithelial cell dysfunction. Am J Physiol Cell Physiol. 2003;284:C1073–C1082.

    PubMed  CAS  Google Scholar 

  62. Guo X, Rao JN, Liu L, et al. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol. 2003;285:C1174–C1187.

    PubMed  CAS  Google Scholar 

  63. Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol. 2001;91:1487–1500.

    PubMed  CAS  Google Scholar 

  64. Liu Y, Wada R, Yamashita T, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Investig. 2000;106:951–961.

    Article  PubMed  CAS  Google Scholar 

  65. Greenspon J, Li R, Xiao L, et al. Sphingosine-1-phosphate protects intestinal epithelial cells from apoptosis through the Akt signaling pathway. Dig Dis Sci. 2008;54:499–510.

    Article  PubMed  Google Scholar 

  66. Corada M, Liao F, Lindgren M, et al. Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood. 2001;97:1679–1684.

    Article  PubMed  CAS  Google Scholar 

  67. Corada M, Mariotti M, Thurston G, et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA. 1999;96:9815–9820.

    Article  PubMed  CAS  Google Scholar 

  68. Yang Z, Zhang H, Kumar R. Regulation of E-cadherin. Breast Cancer Online. 2005;8:e15.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Career Development Award and a VA Merit Award (to D.J.T.) from the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenspon, J., Li, R., Xiao, L. et al. Sphingosine-1-Phosphate Regulates the Expression of Adherens Junction Protein E-Cadherin and Enhances Intestinal Epithelial Cell Barrier Function. Dig Dis Sci 56, 1342–1353 (2011). https://doi.org/10.1007/s10620-010-1421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1421-0

Keywords

Navigation