Skip to main content

Advertisement

Log in

Rectal Administration of Lactobacillus casei DG Modifies Flora Composition and Toll-Like Receptor Expression in Colonic Mucosa of Patients with Mild Ulcerative Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

An imbalance in gut microbiota seems to contribute to the development of chronic inflammatory disorders of the gastrointestinal tract, such as ulcerative colitis (UC). Although it has been suggested that probiotic supplementation is an effective approach to colitis, its effects on intestinal flora and on mucosal cytokine balance have never been explored.

Aim

To evaluate the effect of Lactobacillus casei (L. casei) DG, a probiotic strain, on colonic-associated microbiota, mucosal cytokine balance, and toll-like receptor (TLR) expression.

Methods

Twenty-six patients with mild left-sided UC were randomly allocated to one of three groups for an 8-week treatment period: the first group of 7 patients received oral 5-aminosalicylic acid (5-ASA) alone, the second group of 8 patients received oral 5-ASA plus oral L. casei DG, and the third group of 11 patients received oral 5-ASA and rectal L. casei DG. Biopsies were collected from the sigmoid region to culture mucosal-associated microbes and to assess cytokine and TLR messenger RNA (mRNA) levels by quantitative real-time polymerase chain reaction (RT-PCR).

Results

5-ASA alone or together with oral L. casei DG failed to affect colonic flora and TLR expression in a significant manner, but when coupled with rectally administered L. casei DG, it modified colonic microbiota by increasing Lactobacillus spp. and reducing Enterobacteriaceae. It also significantly reduced TLR-4 and interleukin (IL)-1β mRNA levels and significantly increased mucosal IL-10.

Conclusions

Manipulation of mucosal microbiota by L. casei DG and its effects on the mucosal immune system seem to be required to mediate the beneficial activities of probiotics in UC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kelly D, Conway S, Aminov R. Commensal gut bacteria: Mechanisms of immune modulation. Trends Immunol. 2005;26:326–333.

    Article  PubMed  CAS  Google Scholar 

  2. Sartor RB. Enteric microflora in IBD: Pathogens or commensal? Inflamm. Bowel Dis. 1997;3:230–235.

    Article  Google Scholar 

  3. Mimura T, Rizzello F, Helwig U, et al. Once daily high dose probiotic therapy (VLS#3) for maintaining remission in recurrent or refractory pouchitis. Gut. 2004;53:108–114.

    Article  PubMed  CAS  Google Scholar 

  4. Gionchetti P, Rizzello F, Heiwug U, et al. Prophylaxis of pouchitis onset with probiotic therapy: A double-blind, placebo-controlled trial. Gastroenterology. 2003;124:1202–1209.

    Article  PubMed  Google Scholar 

  5. Dotan I, Rachmilewitz D. Probiotics in inflammatory bowel disease: Possible mechanisms of action. Curr Opin Gastroenterol. 2005;21:426–430.

    PubMed  Google Scholar 

  6. White NR, Mulligan P, King PJ, et al. Sodium butyrate-mediated Sp3 acetylation represses human insulin-like growth factor binding protein-3 expression in intestinal epithelial cells. J Pediatric Gastroenterol Nutr. 2006;42:134–141.

    Article  CAS  Google Scholar 

  7. Ewaschuk JB, Walker JW, Diaz H, et al. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr. 2006;136:1483–1487.

    PubMed  CAS  Google Scholar 

  8. Bassaganya-Riera J, Reynolds K, Martino-Catt S, et al. Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology. 2004;127:777–791.

    Article  PubMed  CAS  Google Scholar 

  9. Voltan S, Martines D, Elli M, et al. Lactobacillus crispatus M247-Derived H2O2 Acts as a Signal Transducing Molecule Activating Peroxisome Proliferator Activated Receptor-γ in the Intestinal Mucosa. Gastroenterology. 2008;135:1216–1227.

    Article  PubMed  CAS  Google Scholar 

  10. Cario E. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut. 2005;54:1182–1193.

    Article  PubMed  CAS  Google Scholar 

  11. Agrawal S, Agrawal A, Doughty B, et al. Cutting edge: Different Toll-like receptors agonist instruct dendritic cells to induce distinct Th responses via different modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos. J Immunol. 2003;171:4984–4989.

    PubMed  CAS  Google Scholar 

  12. Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004;430:257–263.

    Article  PubMed  CAS  Google Scholar 

  13. Netea MG, Van der Meer JWM, Kullberg BJ. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol. 2004;12:484–488.

    Article  PubMed  CAS  Google Scholar 

  14. Voltan S, Castagliuolo I, Elli M, et al. Aggregating phenotype in Lactobacillus crispatus determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. Clin Vaccine Immunol. 2007;14:1138–1148.

    Article  PubMed  CAS  Google Scholar 

  15. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology. 2007;132:1359–1374.

    Article  PubMed  CAS  Google Scholar 

  16. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000;68:7010–7017.

    Article  PubMed  CAS  Google Scholar 

  17. Cario E, Podolsky DK. Intestinal epithelial TOLLerance versus inTOLLerance of commensals. Mol Immunol. 2005;42:887–893.

    Article  PubMed  CAS  Google Scholar 

  18. Castagliuolo I, Galeazzi F, Ferrari S, et al. Beneficial effect of auto-aggregating Lactobacillus crispatus on experimentally induced colitis in mice. FEMS Immunol Med Microbiol. 2005;43:197–204.

    Article  PubMed  CAS  Google Scholar 

  19. Nanda Kumar NS, Balamurugan R, Jayakanthan K, et al. Probiotic administration alters the gut flora and attenuates colitis in mice administered dextran sodium sulfate. J Gastroenterol Hepatol. 2008;23:1834–1839.

    Article  PubMed  Google Scholar 

  20. Edwards FC, Truelove SC. The course and prognosis of ulcerative colitis. Gut. 1963;4:299–315.

    Article  PubMed  CAS  Google Scholar 

  21. Baron J, Connell A, Lennard-Jones A. Variation between observers in describing mucosal appearances in proctocolitis. Br Med J. 1964;1:189–192.

    Google Scholar 

  22. Florén CH, Benoni C, Willén R. Histologic and colonoscopic assessment of disease extension in ulcerative colitis. Scand J Gastroenterol. 1987;22:459–462.

    Article  PubMed  Google Scholar 

  23. Conte MP, Schippa S, Zamboni I, et al. Gut-associated bacterial microbiota in pediatric patients with inflammatory bowel disease. Gut. 2006;55:1760–1767.

    Article  PubMed  CAS  Google Scholar 

  24. Rivas R, Zurdo-Piñeiro EV, Mateos PF, et al. Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. J Microbiol Meth. 2004;56:413–426.

    Article  CAS  Google Scholar 

  25. Mylonaki M, Rayment NB, Rampton DS, et al. Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel diseases. Inflamm Bowel Dis. 2005;11:481–487.

    Article  PubMed  Google Scholar 

  26. Seksik P, Rigottier-Gois L, Gramet G. Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut. 2003;52:237–242.

    Article  PubMed  CAS  Google Scholar 

  27. Penders J, Stobberingh EE, van den Brandt PA, et al. The role of the intestinal microbiota in the development of atopic disorders. Allergy. 2007;62:1223–1236.

    Article  PubMed  CAS  Google Scholar 

  28. Penders J, Thijs C, van den Brandt PA, et al. Gut microbiota composition and development of atopic manifestations in infancy: The KOALA Birth Cohort Study. Gut. 2007;56:661–667.

    Article  PubMed  CAS  Google Scholar 

  29. Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–11075.

    Article  PubMed  CAS  Google Scholar 

  30. Shiba T, Aiba Y, Ishikawa H, et al. The suppressive effect of bifidobacteria on Bacteroides vulgatus, a putative pathogenic microbe in inflammatory bowel disease. Microbiol Immunol. 2003;47:371–378.

    PubMed  CAS  Google Scholar 

  31. Sheil B, Shanahan F, O’Mahony L. Probiotic effects on inflammatory bowel disease. J Nutr. 2007;137:819S–824S.

    PubMed  CAS  Google Scholar 

  32. Gionchetti P, Rizzello F, Heiwug U, et al. Prophylaxis of pouchitis onset with probiotic therapy: A double-blind, placebo-controlled trial. Gastroenterology. 2003;124:1202–1209.

    Article  PubMed  Google Scholar 

  33. Kruis W, Fri P, Pokrotnieks J, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53:1617–1623.

    Article  PubMed  CAS  Google Scholar 

  34. Cui H-H, Chen C-L, Wang J-D, et al. Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J Gastroenterol. 2004;10:1521–1525.

    PubMed  CAS  Google Scholar 

  35. Suau A, Bonnet R, Sutren M, Gordon JJ, Gibson GR, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65:4799–4807.

    PubMed  CAS  Google Scholar 

  36. Bartosch S, Fite A, Macfarlane GT, McMurdo MF. Characteization of bacterial communities in feces from healthy volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the faecal microbiota. Appl Environ Microbiol. 2004;70:3575–3581.

    Article  PubMed  CAS  Google Scholar 

  37. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut micobiota, as revealed by deep 16S rRNA sequencing. PLOS Biol. 2008,6:e280 2383–2400.

    Google Scholar 

  38. Morelli L, Garbagna N, Rizzello F, Zonenschain D, Grossi E. In vivo association to human colon of Lactobacillus paracasei B21060: Map from biopsies. Dig Liv Dis. 2006;38:894–898.

    Article  CAS  Google Scholar 

  39. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–421.

    Article  PubMed  Google Scholar 

  40. Swidsinski A, Loening-Baucke V, Herber A. Mucosal flora in Crohn’s disease and ulcerative colitis - an overview. J Physiol Pharmacol. 2009;60(Suppl 6):61–71.

    PubMed  Google Scholar 

  41. Linskens RK, Huijsdens XW, Savelkoul PH, Vandenbroucke-Grauls CM, Meuwissen SG. The bacterial flora in inflammatory bowel disease: Current insights in pathogenesis and the influence of antibiotics and probiotics. Scand J Gastroenterol Suppl. 2001;234:29–40.

    Article  PubMed  Google Scholar 

  42. Venturi A, Gionchetti P, Rizzello F, et al. Impact on the composition of the faecal flora by a new probiotic preparation: Preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther. 1999;13:1103–1108.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly D, Campbell JI, King TP, et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol. 2004;5:104–112.

    Article  PubMed  CAS  Google Scholar 

  44. van Baarlen P, Troost FJ, van Hemert S, et al. Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci U S A. 2009;106:2371–2376.

    Article  PubMed  Google Scholar 

  45. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–435.

    Article  PubMed  CAS  Google Scholar 

  46. Ortega-Cava CF, Ishihara S, Rumi MAK, et al. Strategic compartmentalization of toll-like receptor 4 in the mouse gut. J Immunol. 2003;170:3977–3985.

    PubMed  CAS  Google Scholar 

  47. Zhang R, Li Y, Beck PL, et al. Toll-like receptor 4 regulates colitis-associated adenocarcinoma development in interleukin-10-deficient (IL-10(-/-)) mice. Biochem Soc Trans. 2007;35:1375–1376.

    Article  PubMed  CAS  Google Scholar 

  48. Masayuki F, Fukata M, Chen A, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 2007;133:1869–1881.

    Article  Google Scholar 

  49. Cario E, Gerken G, Podolsky D. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology. 2004;127:224–238.

    Article  PubMed  CAS  Google Scholar 

  50. Seo M, Okada M, Yao T, Okabe N, Maeda K, Oh K. Evaluation of disease activity in patients with moderately active ulcerative colitis: Comparisons between a new activity index and Truelove and Witts’ classification. Am J Gastroenterol. 1995;90:1759–1763.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Miss Linda Inverso for editing the manuscript. Source of support: MIUR and University of Padua.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Castagliuolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Incà, R., Barollo, M., Scarpa, M. et al. Rectal Administration of Lactobacillus casei DG Modifies Flora Composition and Toll-Like Receptor Expression in Colonic Mucosa of Patients with Mild Ulcerative Colitis. Dig Dis Sci 56, 1178–1187 (2011). https://doi.org/10.1007/s10620-010-1384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1384-1

Keywords

Navigation