Skip to main content

Advertisement

Log in

A Short Primer on the Calcium Sensing Receptor: An Important Cog in the Colon Cancer Wheel?

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The gastrointestinal (GI) tract handles a complex task of nutrient absorption and excretion of excess fluid, electrolytes, and toxic substances. GI epithelium is under constant proliferation and renewal. Differentiation of colonocytes occurs as they migrate from the basal layer to the apex of the crypt. Cells of the basal layer are highly proliferative but less differentiated, whereas apical cells are highly differentiated but non-proliferative. Alterations of this intricate process lead to abnormal proliferation and differentiation of colorectal mucosa leading to development of polyps and neoplasia. The effects of calcium (Ca) on colorectal mucosal growth have been extensively studied after the discovery of the calcium sensing receptor (CaSR). Fluctuation in extracellular Ca can induce hyperproliferation or quiescence. Disruption in the function of CaSR and/or changes in the level of CaSR expression can cause loss of growth suppressing effects of extracellular Ca. This review addresses the role of Ca and CaSR in the physiology and pathophysiology of colonocyte proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GI:

Gastrointestinal

Ca:

Calcium

CaSR:

Calcium sensing receptor

ATP:

Adenosine triphosphate

GPCR:

G-protein coupled receptor

MAPK:

Mitogen-activated protein kinase

APC:

Adenomatous polyposis coli

TA:

Transit amplifying

DNA:

Deoxyribonucleic acid

HMG:

High mobility group

TCF:

T-cell factor

PKC:

Protein kinase

GSK:

Glycogen synthase kinase

VDR:

Vitamin D receptor

SC:

Stem cell

NSC:

Non-stem cell

SI:

Sucrase isomaltase

References

  1. Feldman M, Frideman LS, Brandt LJ. Minerals. In: Sleisenger and Fordtran’s Gastrointestinal and Liver diseases. Vol 1. 8th ed. Saunders; 2006: 2177–2178.

  2. Halstead CH, Levine MA, Lonnerdal BL et al. Vitamins and minerals. In: Textbook of Gastroenterology. Vol 1, 5th ed. Oxford: Blackwell; 2009:494–496.

  3. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81:239–297.

    CAS  PubMed  Google Scholar 

  4. Saidak Z, Mentaverri R, Brown EM. The role of calcium sensing receptor in the development and progression of cancer. Endocr Rev. 2009;30(2):178–195.

    Article  CAS  PubMed  Google Scholar 

  5. Whitfield JF. Calcium, calcium-sensing receptor and colon cancer. Cancer Lett. 2009;275:9–16.

    Article  CAS  PubMed  Google Scholar 

  6. Whitfield JF, Bird RP, Chakravarthy B, Isaacs RJ et al. Calcium: Cell cycle regulator, differentiator, killer, chemopreventor, and maybe, tumor promoter. J Cell Biochem. 1995; (Suppl. 22):74–91.

  7. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006; (127):469–480.

  8. Gregorieff A, Pinto D, Begthel H, et al. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology. 2005;129:626–638.

    CAS  PubMed  Google Scholar 

  9. Pinto D, Clevers H. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res. 2007;306:357–363.

    Article  Google Scholar 

  10. Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor proteins with catenins. Science. 1993;262:1734–1737.

    Article  CAS  PubMed  Google Scholar 

  11. Nathke I. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol. 2004;20:337–366.

    Article  PubMed  Google Scholar 

  12. Tian JQ, Quaroni A. Involvement of p21 (WAF/CIP1) and p27 (Kip1) in intestinal epithelial cell differentiation. Am J Physiol. 1999;276:C1245–C1258.

    CAS  PubMed  Google Scholar 

  13. Chakrabarty S, Wang H, Canaff L, et al. Calcium sensing receptor in human colon carcinoma: interaction with Ca2+ and 1,25-Dihydroxyvitamin D3. Cancer Res. 2005;65(2):493–498.

    CAS  PubMed  Google Scholar 

  14. Brenner BM, Russell N, Albrecht S, et al. The effect of dietary vitamin D3 on the intracellular calcium gradient in mammalian colonic crypts. Cancer Lett. 1998;127:43–53.

    Article  CAS  PubMed  Google Scholar 

  15. Chakrabarty S, Radjendirane V, Appelman H, et al. Extracellular calcium and calcium sensing receptor function in human colon carcinomas: promotion of E-cadherin expression and suppression of β-catenin-TCF activation. Cancer Res. 2003;63:67–71.

    CAS  PubMed  Google Scholar 

  16. Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198:11–26.

    CAS  PubMed  Google Scholar 

  17. Birchmeier W. E-cadherin as a tumor (invasion) suppressor gene. Bioessays. 1995;17:97–99.

    Article  CAS  PubMed  Google Scholar 

  18. Oka H, Shiozaki H, Kobayashi K, et al. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 1993;53:1696–1701.

    CAS  PubMed  Google Scholar 

  19. Pignatelli M, Ansari TW, Gunter P, et al. Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J Pathol. 1994;174:243–248.

    Article  CAS  PubMed  Google Scholar 

  20. Bhagavathula N, Kelley EA, Reddy M, et al. Upregulation of calcium-sensing receptor and mitogen-activated protein kinase signaling in the regulation of growth and differentiation in colon carcinoma. Br J Cancer. 2005;93:1364–1371.

    Article  CAS  PubMed  Google Scholar 

  21. Morin PJ. β-catenin signaling and cancer. Bioessays. 1999;21:1021–1030.

    Article  CAS  PubMed  Google Scholar 

  22. Fagotto F, Funayama N, Gluck U, et al. Binding to cadherins antagonizes the signaling activity of β-catenin during axis formation in Xenopus. J Cell Biol. 1996;132:1105–1114.

    Article  CAS  PubMed  Google Scholar 

  23. Wong NA, Pignatelli M. β-catenin—a linchpin in colorectal carcinogenesis? Am J Pathol. 2002;160:389–401.

    CAS  PubMed  Google Scholar 

  24. Bhagvathula N, Hanosh AW, Nerusu KC, et al. Regulation of E-cadherin and β-catenin by Ca2+ in colon carcinoma is dependent on calcium-sensing receptor expression and function. Int J Cancer. 2007;121:1455–1462.

    Article  Google Scholar 

  25. Scaglione-Sewell B, Abraham C, Bissonnette M, et al. Decreased PKC-α expression increases cellular proliferation, decreases differentiation, and enhances the transformed phenotype of CaCo-2 cells. Cancer Res. 1998;58:1074–1081.

    CAS  PubMed  Google Scholar 

  26. Guillem JG, O’Brian CA, Fitzer CJ, et al. Studies on protein kinase C and colon carcinogenesis. Arch Surg. 1987;122:1475–1478.

    CAS  PubMed  Google Scholar 

  27. Peterlink M, Grant WB, Cross HS, et al. Calcium, vitamin D and cancer. Anticancer Res. 2009;29:3687–3698.

    Google Scholar 

  28. Cross HS, Pavelka M, Slavik J, et al. Growth control of human colon cancer cells by vitamin D and calcium in vitro. J Natl Cancer Inst. 1992;84:1355–1357.

    Article  CAS  PubMed  Google Scholar 

  29. Cross HS, Hulla W, Tong WM, et al. Growth regulation of human colon adenocarcinoma-derived cells by calcium, vitamin D and epidermal growth factor. J Nutr. 1995;125:2004S–2008S.

    CAS  PubMed  Google Scholar 

  30. Hulla W, Kallay E, Krugluger W, et al. Growth control of human colon-adenocarcinoma-derived Caco-2 cells by vitamin-D compounds and extracellular calcium in vitro: relation to c-myc oncogene and vitamin D receptor expression. Int J Cancer. 1995;62:711–716.

    Article  CAS  PubMed  Google Scholar 

  31. Tong WM, Hofer H, Ellinger A, et al. Mechanism of antimitogenic action of vitamin D in human colon carcinoma cells: relevance for suppression of epidermal growth factor-stimulated cell growth. Oncol Res. 1999;11:77–84.

    CAS  PubMed  Google Scholar 

  32. Hoenderop JGJ, Nilius B, Bindels RJM. Calcium absorption across epithelia. Physiol Rev. 2004;85:373–422.

    Article  Google Scholar 

  33. Renehan AG, O’Dwyer ST, Haboubi NJ, et al. Early events in colorectal carcinogenesis. Colorectal Dis. 2002;4:76–89.

    Article  PubMed  Google Scholar 

  34. Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multifunctional tumor suppressor gene. J Cell Sci. 2007;120:3327–3335.

    Article  CAS  PubMed  Google Scholar 

  35. Senda T, Shimomura A, Iizuka-Kogo A. Adenomatosis polyposis coli (Apc) tumor suppressor gene as a multifunctional gene. Anat Sci Int. 2005;80:121–131.

    Article  CAS  PubMed  Google Scholar 

  36. Deng G, Song A, Pong E, et al. Promoter methylation inhibits APC gene expression by causing changes in chromatin conformation and interfering with the binding of transcription factor CCAAT-binding factor. Cancer Res. 2004;64:2692–2698.

    Article  CAS  PubMed  Google Scholar 

  37. Smith KJ, Johnson KA, Bryan TA, et al. The APC gene product in normal and tumor cells. Proc Natl Acad Sci USA. 1993;90:2846–2850.

    Article  CAS  PubMed  Google Scholar 

  38. Boquoi A, Enders GH. Adenomatous polyposis coli mutations in colon cancer-slipping off the brake and onto the gas pedal. Cancer Biol Ther. 2008;7:485–487.

    Article  CAS  Google Scholar 

  39. Huncharek M, Muscat J, Kupelnick B. Colorectal cancer risk and dietary intake of calcium, vitamin D, and dairy products: a meta-analysis of 26, 335 cases from 60 observational studies. Nutr Cancer. 2009;61:47–69.

    Article  CAS  PubMed  Google Scholar 

  40. Shabahang M, Buras RR, Davoodi F, et al. 1, 25-Dihydroxyvitamin D3 receptor as a marker of human colon carcinoma cell line differentiation and growth inhibition. Cancer Res. 1993;53:3712–3718.

    CAS  PubMed  Google Scholar 

  41. Evans SR, Nolla J, Hanfelt J, et al. Vitamin D receptor expression as a predictive marker of biological behavior in human colorectal cancer. Clin Cancer Res. 1998;4:1591–1595.

    CAS  PubMed  Google Scholar 

  42. Vandewalle B, Adenis A, Hornez L, et al. 1, 25-Dihydroxyvitamin D3 receptors in normal and malignant human colorectal tissues. Cancer Lett. 1994;86:67–73.

    Article  CAS  PubMed  Google Scholar 

  43. Canaff L, Hendy GN. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1, 25-Dihydroxyvitamin D. J Biol Chem. 2002;277:30337–30350.

    Article  CAS  PubMed  Google Scholar 

  44. Palmer HG, Gonzalez-Sancho J, Espada J, et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J Cell Biol. 2001;154:369–3870.

    Article  CAS  PubMed  Google Scholar 

  45. Cross HS, Nittke T, Peterlink M. Modulation of vitamin D synthesis and catabolism in colorectal mucosa: a new target for cancer prevention. Anticancer Res. 2009;29:3705–3712.

    CAS  PubMed  Google Scholar 

  46. Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.

    CAS  PubMed  Google Scholar 

  47. Bacsi K, Hitre E, Kosa JP, et al. Effects of the lactase 13910C/T and calcium-sensor receptor A986S G/T gene polymorphisms on the incidence and recurrence of colorectal cancer in Hungarian population. BMC Cancer. 2008;8:317–324.

    Article  PubMed  Google Scholar 

  48. Jenab M, McKay J, Bueno-de-Mesquita HB, et al. Vitamin D receptor and calcium sensing receptor polymorphisms and the risk of colorectal cancer in European populations. Cancer Epidemiol Biomarkers Prev. 2009;18(9):2485–2491.

    Article  CAS  PubMed  Google Scholar 

  49. Pacheco II, MacLeod RJ. CaSR stimulates secretion of Wnt5a from colonic myofibroblasts to stimulate CDX2 and sucrase-isomaltase using Ror2 on intestinal epithelia. Am J Physiol Gastrointest Liver Physiol. 2008;295:748–759.

    Article  Google Scholar 

  50. MacLeod RJ, Hayes M, Pacheco I. Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am J Physiol Gastrintest Liver Physiol. 2007;293:403–411.

    Article  Google Scholar 

  51. Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca (2+)-sensing receptor from bovine parathyroid. Nature. 1993;366:575–580.

    Article  CAS  PubMed  Google Scholar 

  52. Harris DM, Go VLW. Vitamin D and colon carcinogenesis. J Nutr. 2004;134:3463S–3471S.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Ghevariya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghevariya, V., Anand, S. A Short Primer on the Calcium Sensing Receptor: An Important Cog in the Colon Cancer Wheel?. Dig Dis Sci 56, 279–284 (2011). https://doi.org/10.1007/s10620-010-1295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1295-1

Keywords

Navigation