Skip to main content

Advertisement

Log in

Targeting PI3K/Akt/HSP90 Signaling Sensitizes Gastric Cancer Cells to Deoxycholate-Induced Apoptosis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The heat shock protein 90 (HSP90) plays a crucial role in the stability of several proteins that are essential for cell survival and for malignant transformation. The binding of HSP90 with pro-survival kinase Akt prevents proteosomal degradation of Akt and contributes to the functional stabilization of PI3K/Akt signaling and cell survival. Akt kinase and HSP90 are therefore highly over-expressed in a large panel of cancer cell lines and are present in multi-chaperoning complexes. In this paper, we investigated whether targeting both Akt and HSP90 would inhibit the survival pathway in AGS cells (human gastric mucosal cells), and how Akt/HSP90 inhibition modulates the deoxycholate (DC)-induced apoptosis.

Methods

AGS cells in the presence of Akt inhibitors (LY294002 and wortmannin), or HSP90 inhibitor (geldanamycin, GA) for 30 min or 18 h, respectively, were treated with DC (50 µM). Activation of PI3K/Akt signaling was evaluated by measuring the Akt and PTEN phosphorylation. HSP90, caspase-3 and caspase-9 were detected in whole lysates by Western blot analysis. AGS cells, transiently transfected with Akt siRNA, were treated with DC, and apoptosis was measured by caspase-3 activation. Apoptotic-positive cells were counted according to changes of cell morphology by Hoechst staining and fluorescence microscopy.

Results

The intrinsic level of phospho-Akt (pAkt; active form), phospho-PTEN (pPTEN; inactive enzyme) and HSP90 were highly expressed in AGS cells indicating the active PI3K/Akt/HSP90 signaling. Although, deoxycholate at low concentration (50 µM) slightly inhibited the expression of pAkt and cleaved HSP90 to 55 KDa fragment, no significant effect on apoptosis induction, up to 4 h (as assessed by caspase-3 activation) was observed. The higher concentrations of DC (100 µM-300 µM) resulted in progressive inhibition of pAkt, activation of PTEN, and specific cleavage of HSP90 to approximately 45 KDa fragments with significant induction of apoptosis. Although DC (50 µM) had no profound effect on Akt/HSP90 and did not induce apoptosis, it became an inducer of apoptosis when cells were pretreated with LY294002, wortmannin, or geldanamycin. Consistent with these findings, significant activation of apoptosis in response to DC (50 µM) was observed in cells with depleted Akt protein.

Conclusions

These results demonstrate that down-regulation of PI3K/Akt pathway with specific cleavage of HSP90 to 45 KDa modulates the pro-apoptotic effects of DC in gastric cells. They further indicate the importance of stable Akt/HSP90 complex in regulation of survival/death responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-Akt pathway in human cancer. Nature Rev Cancer. 2002;2:489–501.

    Article  CAS  Google Scholar 

  2. Michl P, Downward J. Mechanism of disease: PI3K/AKT signaling in gastrointestinal cancers. Gastroenterology. 2005;43(10):1133–1139.

    CAS  Google Scholar 

  3. Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3/Akt pathway in cell cycle progression, apoptosis and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003;17:590–603.

    Article  CAS  PubMed  Google Scholar 

  4. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–2927.

    Article  CAS  PubMed  Google Scholar 

  5. Bijur GN, Jope RS. Rapid accumulation of Akt in mitochondria following phosphatidylinosil 3-kinase activation. J Neurochem. 2003;87:1427–1435.

    Article  CAS  PubMed  Google Scholar 

  6. Meier L, Alessi DR, Cron P, Andjelkovic M, Hemmings BA. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bβ. J Biol Chem. 1997;272:30491–30497.

    Article  CAS  PubMed  Google Scholar 

  7. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road to PKB. Biochem J. 2000;346:561–576.

    Article  CAS  PubMed  Google Scholar 

  8. Maehama T. PTEN: its deregulation and tumorigenesis. Biol Pharm Bull. 2007;30(9):1624–1627.

    Article  CAS  PubMed  Google Scholar 

  9. Wegele H, Muller L, Buchner J. Hsp70 and Hsp90—a relay team for protein folding. Rev Physiol Biochem Pharmacol. 2004;151:1–44.

    Article  CAS  PubMed  Google Scholar 

  10. Neckers L. HSP90 inhibitor as novel cancer chemotherapeutic agent. Trends Mol Med. 2002;8(4):S55–S61.

    Article  CAS  PubMed  Google Scholar 

  11. Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of HSP90 confers tumor selectivity on HSP90 inhibitors. Nature. 2003;425:407–410.

    Article  CAS  PubMed  Google Scholar 

  12. Isaacs JS, Xu W, Necker L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell. 2003;3:213–217.

    Article  CAS  PubMed  Google Scholar 

  13. Redlak MJ, Dennis MS, Miller TA. Apoptosis is a major mechanism of deoxycholate-induced gastric mucosal cell death. Am J Physiol Gastrointest Liver Physiol. 2003;25(5):G870–G879.

    Google Scholar 

  14. Redlak MJ, Power JJ, Miller TA. Protein kinase C involvement in deoxycholate-induced apoptosis in human gastric cells. Dig Dis Sci. 2006;51(5):834–843.

    Article  CAS  PubMed  Google Scholar 

  15. Redlak MJ, Power JJ, Miller TA. Prevention of deoxycholate-induced gastric apoptosis by aspirin: roles of NF-kB and PKC signaling. J Surg Res. 2008;145:66–73.

    Article  CAS  PubMed  Google Scholar 

  16. Bradford HW. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.

    Article  CAS  PubMed  Google Scholar 

  17. Jeon YK, Park CH, Kim K-Y, et al. The heat-shock protein 90- inhibitor, geldanamycin induces apoptosis cell death in Epstein-Barr virus-positive NK/T-cell lymphoma by Akt down-regulation. J Pathol. 2007;213:170–179.

    Article  CAS  PubMed  Google Scholar 

  18. Chandarlapaty S, Sawai A, Ye Q, et al. SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase-dependent cancers. Clin Cancer Res. 2008;14(1):240–248.

    Article  CAS  PubMed  Google Scholar 

  19. Moser C, Lang SA, Stoeltzing O. Heat-shock protein 90 (Hsp90) as a molecular target for therapy of gastrointestinal cancer. Anticancer Res. 2009;29:2031–2042.

    CAS  PubMed  Google Scholar 

  20. Arya R, Malik M, Lakhotia SC. Heat shock genes—integrating cell survival and death. J Biosci. 2007;32:595–610.

    Article  CAS  PubMed  Google Scholar 

  21. Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrom c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000;19:4310–4322.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao C, Wang E. Heat shock protein 90 suppresses tumor necrosis factor alpha induced apoptosis by preventing the cleavage of Bid in NIH3T3 fibroblasts. Cell Signal. 2004;16:313–321.

    Article  CAS  PubMed  Google Scholar 

  23. Beck R, Varrax J, Gonze T, et al. Hsp90 cleavage by an oxidative stress leads to its client proteins degradation and cancer cell death. Biochem Pharmacol. 2009;77(3):375–383.

    Article  CAS  PubMed  Google Scholar 

  24. Pantano C, Shrivastava P, McElhinney B, Janssen-Heininger Y. Hydrogen peroxide signaling through tumor necrosis factor receptor 1 leads to selective activation of c-Jun N-terminal kinase. J Biol Chem. 2003;278:44091–44096.

    Article  CAS  PubMed  Google Scholar 

  25. Panopoulos A, Harraz M, Engelhardt JF, Zandi E. Iron-mediated H2O2 production as a mechanism for cell type-specific inhibition of tumor necrosis factor alpha-induced but not interleukin-1beta-indiced IkappaB kinase complex/nuclear factor-kappaB activation. J Biol Chem. 2005;280:2912–2923.

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Xia Y, Fang D, Hawke D, Lu Z. Caspase-10 mediated heat shock protein 90B cleavage promotes UVB irradiation-induced cell apoptosis. Mol Cell Biol. 2009;29(13):3657–3664.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by The Jeffress Memorial Trust grant J-878 awarded to Dr. Maria J. Redlak.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redlak, M.J., Miller, T.A. Targeting PI3K/Akt/HSP90 Signaling Sensitizes Gastric Cancer Cells to Deoxycholate-Induced Apoptosis. Dig Dis Sci 56, 323–329 (2011). https://doi.org/10.1007/s10620-010-1294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1294-2

Keywords

Navigation