Skip to main content
Log in

The Role of Sonic Hedgehog Reemergence During Gastric Cancer

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Sonic Hedgehog (Shh) signaling has been extensively studied for its role in developmental biology and cancer biology. The association between Shh and cancer development in general is well established but the functional role of Shh in the development and progression of gastric cancer specifically is largely unknown. Bone marrow-derived stem cells, specifically mesenchymal stem cells (MSCs) infiltrate and engraft into the gastric mucosa in response to the chronic inflammatory environment of Helicobacter infection. In this review, MSC infiltration and changes in the cytokine and cellular profiles of later-stage chronic environments will be tied into their interactions with the Shh pathway. We will discuss how these changes shape tumorigenesis and tumor progression in the gastric mucosa. The current review focuses on the Shh signaling pathway and its role in the development of gastric cancer, specifically in response to Helicobacter pylori infection. We follow with an in-depth discussion of the regulation of the Hedgehog pathway during acute and chronic gastric inflammation with a focus on signaling within the MSC compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Shh:

Sonic Hedgehog

Ihh:

Indian Hedgehog

Dhh:

Desert Hedgehog

Smo:

Smoothened

Ptch:

Patched

Gli1:

Glioma-associated Oncogene homolog 1

Hh:

Hedgehog

H. pylori :

Helicobacter pylori

Hp:

H. pylori

BMDC:

Bone-marrow-derived cells

MSCs:

Bone-marrow-derived mesenchymal stem cells

CDX2:

Caudal-type homeobox transcription factor 2

SDF-1:

Stromal-derived factor-1

MDSC:

Myeloid-derived suppressor cells

References

  1. Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in drosophila. Nature. 1980;287:795–801.

    Article  PubMed  Google Scholar 

  2. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127:2763–2772.

    CAS  PubMed  Google Scholar 

  3. Shiotani A, Iishi H, Uedo N, et al. Evidence that loss of sonic hedgehog is an indicator of Helicobater pylori-induced atrophic gastritis progressing to gastric cancer. Am J Gastroenterol. 2005;100:581–587.

    Article  CAS  PubMed  Google Scholar 

  4. van den Brink GR, Hardwick JC, Nielsen C, et al. Sonic hedgehog expression correlates with fundic gland differentiation in the adult gastrointestinal tract. Gut. 2002;51:628–633.

    Article  PubMed  Google Scholar 

  5. Xiao C, Ogle SA, Schumacher MA, et al. Loss of parietal cell expression of sonic hedgehog induces hypergastrinemia and hyperproliferation of surface mucous cells. Gastroenterology. 2010;138:550–561.

    Article  CAS  PubMed  Google Scholar 

  6. Ma X, Chen K, Huang S, et al. Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas. Carcinogenesis. 2005;26:1698–1705.

    Article  CAS  PubMed  Google Scholar 

  7. Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–851.

    Article  CAS  PubMed  Google Scholar 

  8. Porter JA, von Kessler DP, Ekker SC, et al. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature. 1995;374:363–366.

    Article  CAS  PubMed  Google Scholar 

  9. Goetz JA, Singh S, Suber LM, Kull FJ, Robbins DJ. A highly conserved amino-terminal region of sonic hedgehog is required for the formation of its freely diffusible multimeric form. J Biol Chem. 2006;281:4087–4093.

    Article  CAS  PubMed  Google Scholar 

  10. Torroja C, Gorfinkiel N, Guerrero I. Mechanisms of hedgehog gradient formation and interpretation. J Neurobiol. 2005;64:334–356.

    Article  CAS  PubMed  Google Scholar 

  11. Mann RK, Beachy P. Novel lipid modifications of secreted protein signals. Ann Rev Biochem. 2004;73:891–923.

    Article  CAS  PubMed  Google Scholar 

  12. Pepinsky RB, Zeng C, Wen D, et al. Identification of a palmitic acid-modified form of human sonic hedgehog. J Biol Chem. 1998;273:14037–14045.

    Article  CAS  PubMed  Google Scholar 

  13. Goodrich LV, Johnson RL, Milenkovic L, McMahon JA, Scott MP. Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by hedgehog. Genes Dev. 1996;10:301–312.

    Article  CAS  PubMed  Google Scholar 

  14. Taipale J, Cooper MK, Maiti T, Beachy PA. Patched acts catalytically to suppress the activity of smoothened. Nature. 2002;418:892–896.

    Article  CAS  PubMed  Google Scholar 

  15. Hui CC, Slusarski D, Platt KA, Holmgren R, Joyner AL. Expression of three mouse homologs of the drosophila segment polarity gene cubitus interruptus, gli, gli-2, and gli-3, in ectoderm- and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol. 1994;162:402–413.

    Article  CAS  PubMed  Google Scholar 

  16. DW LiX, Lobo-Ruppert SM, Ruppert JM. Gli1 acts through snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene. 2007;26:4489–4498.

    Article  Google Scholar 

  17. Li X, Deng W, Nail CD, et al. Snail induction is an early response to gli1 that determines the efficiency of epithelial transformation. Oncogene. 2006;25:609–621.

    CAS  PubMed  Google Scholar 

  18. Stepan V, Ramamoorthy S, Nitsche H, Zavros Y, Merchant JL, Todisco A. Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells. J Biol Chem. 2005;280:15700–15708.

    Article  CAS  PubMed  Google Scholar 

  19. Zavros Y, Waghray M, Tessier A, et al. Reduced pepsin a processing of sonic hedgehog in parietal cells precedes gastric atrophy and transformation. J Biol Chem. 2007;282:33265–33274.

    Article  CAS  PubMed  Google Scholar 

  20. Waghray M, Zavros Y, Saqui-Salces M, et al. Interleukin-1beta promotes gastric atrophy through suppression of sonic hedgehog. Gastrotenterology. 2010;138:562–572.

    Article  CAS  Google Scholar 

  21. Zavros Y, Orr M, Xiao C, Malinowska DH. Sonic hedgehog is associated with h + , k + -ATPase-containing membranes in gastric parietal cells and secreted with histamine stimulation. Am J Physiol. 2008;295:G99–G111.

    CAS  Google Scholar 

  22. Vincent S, Thomas A, Brasher B, Benson JD. Targeting of proteins to membranes through hedgehog auto-processing. Nat Biotechnol. 2003;21:936–940.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida H, Okamoto K, Iwamoto T, et al. Pepstatin A, an aspartic proteinase inhibitor, suppresses rankl-induced osteoclast differentiation. J Biochem. 2006;139:583–590.

    Article  CAS  PubMed  Google Scholar 

  24. Osawa H, Ohnishi H, Takano K, et al. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through erk activation by elevating intracellular calcium concentration. Biochem Biophys Res Commun. 2006;344:680–687.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshimine Y, Tsukuba T, Isobe R, et al. Specific immunocytochemical localization of cathepsin E at the ruffled border membrane of active osteoclasts. Cell Tissue Res. 1995;281:85–91.

    Article  CAS  PubMed  Google Scholar 

  26. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–1571.

    Article  CAS  PubMed  Google Scholar 

  27. Kim JH, Huang Z, Mo R. Gli3 null mice display glandular overgrowth of the developing stomach. Dev Dyn. 2005;234:984–991.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki H, Minegishi Y, Nomoto Y, et al. Down-regulation of a morphogen (Sonic hedgehog) gradient in the gastric epithelium of Helicobacter pylori-infected Mongolian gerbils. J Pathol. 2005;206:186–197.

    Article  CAS  PubMed  Google Scholar 

  29. El-Zaatari M, Grabowska A, McKenzie AJ, Powe DG, Scotting PJ, Watson SA. Cyclopamine inhibition of the sonic hedgehog pathway in the stomach requires concomitant acid inhibition. Regul Pept. 2008;146:131–139.

    Article  CAS  PubMed  Google Scholar 

  30. El-Zaatari M, Tobias A, Grabowska AM, et al. De-regulation of the sonic hedgehog pathway in the insgas mouse model of gastric carcinogenesis. Br J Cancer. 2007;96:1855–1861.

    Article  CAS  PubMed  Google Scholar 

  31. Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–789.

    Article  CAS  PubMed  Google Scholar 

  32. Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M. A model for gastric cancer epidemiology. Lancet. 1975;2:58–60.

    Article  CAS  PubMed  Google Scholar 

  33. Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology. 2007;133:659–672.

    Article  CAS  PubMed  Google Scholar 

  34. Goldenring JR, Nomura S. Differentiation of the gastric mucosa III. Animal models of oxyntic atrophy and metaplasia. Am J Gastroenterol. 2006;291:G999–G1004.

    CAS  Google Scholar 

  35. Katoh Y, Katoh M. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (review). Int J Mol Med. 2006;18:1019–1023.

    CAS  PubMed  Google Scholar 

  36. Dimmler A, Brabletz T, Hlubek F, et al. Transcription of sonic hedgehog, a potential factor for gastric morphogenesis and gastric mucosa maintenance, is up-regulated in acidic conditions. Lab Invest. 2003;83:1829–1837.

    Article  CAS  PubMed  Google Scholar 

  37. Minegishi Y, Suzuki H, Arakawa M, et al. Reduced shh expression in tff2-overexpressing lesions of the gastric fundus under hypochlorhydric conditions. J Pathol. 2007;213:161–169.

    Article  CAS  PubMed  Google Scholar 

  38. Zavros Y, Rathinavelu S, Kao JY, et al. Treatment of Helicobacter gastritis with il-4 requires somatostatin. Proc Natl Acad Sci U S A. 2003;100:12944–12949.

    Article  CAS  PubMed  Google Scholar 

  39. El-Omar EM, Carrington M, Chow WH, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature. 2000;404:398–402.

    Article  CAS  PubMed  Google Scholar 

  40. El-Omar EM. The importance of interleukin 1beta in Helicobacter pylori-associated disease. Gut. 2001;48:743–747.

    Article  CAS  PubMed  Google Scholar 

  41. Franic TV, Judd L, Robinson D, et al. Regulation of gastric epithelial cell development revealed in h(+)/k(+)-ATPase beta-subunit- and gastrin-deficient mice. Am J Physiol. 2001;281:G1502–G1511.

    CAS  Google Scholar 

  42. Ohta M, Tateishi K, Kanai F, et al. P53-independent negative regulation of p21/cyclin-dependent kinase-interacting protein 1 by the sonic hedgehog-glioma-associated oncogene 1 pathway in gastric carcinoma cells. Cancer Res. 2005;65:10822–10829.

    Article  CAS  PubMed  Google Scholar 

  43. Aihara M, Tsuchimoto D, Takizawa H, et al. Mechanisms involved in Helicobacter pylori-induced interleukin-8 production by a gastric cancer cell line, mkn45. Infect Immun. 1997;65:3218–3224.

    CAS  PubMed  Google Scholar 

  44. Chu SH, Kim H, Seo JY, Lim JW, Mukaida N, Kim KH. Role of NF-kappab and ap-1 on Helicobater pylori-induced il-8 expression in ags cells. Dig Dis Sci. 2003;48:257–265.

    Article  PubMed  Google Scholar 

  45. Kasperczyk H, Baumann B, Debatin KM, Fulda S. Characterization of sonic hedgehog as a novel NF-kappab target gene that promotes NF-kappab-mediated apoptosis resistance and tumor growth in vivo. FASEB J. 2009;23:21–33.

    Article  CAS  PubMed  Google Scholar 

  46. Watkins DN, Peacock C. Hedgehog signaling in foregut malignancy. Biochem Pharmacol. 2004;68:1055–1060.

    Article  CAS  PubMed  Google Scholar 

  47. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature. 2003;422:313–317.

    Article  CAS  PubMed  Google Scholar 

  48. Karhadkar SS, Bova G, Abdallah N, et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 2004;431:707–712.

    Article  CAS  PubMed  Google Scholar 

  49. Kitaori T, Ito H, Schwarz EM, et al. Stromal cell-derived factor 1/cxcr4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 2009;60:813–823.

    Article  CAS  PubMed  Google Scholar 

  50. Kyriakou C, Rabin N, Pizzey A, Nathwani A, Yong K. Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica. 2008;93:1457–1465.

    Article  CAS  PubMed  Google Scholar 

  51. Haider HKh, Jiang S, Idris NM, Ashraf M. Igf-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of sdf-1alpha/cxcr4 signaling to promote myocardial repair. Circ Res. 2008;103:1300–1308.

    Article  CAS  PubMed  Google Scholar 

  52. Tu S, Bhagat G, Cui G, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14:408–419.

    Article  CAS  PubMed  Google Scholar 

  53. Yagi N, Manabe I, Tottori T, et al. A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo. Cancer Res. 2009;69:6531–6538.

    Article  CAS  PubMed  Google Scholar 

  54. Schugar RC, Robbins P, Deasy BM. Small molecules in stem cell self-renewal and differentiation. Gene Ther. 2008;15:126–135.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Glenn Doerman (Graphic Design, Illustrations, Presentations & Desktop Publishing, Departments of Cancer & Cell Biology and Molecular and Cellular Physiology, University of Cincinnati) for helping us generate Figs. 1, 2, 3, and 4. This work was supported by start-up funds (Department of Molecular and Cellular Physiology, University of Cincinnati) and from the Digestive Health Center Cincinnati Children’s Medical Health Center (DHC: Bench to Bedside Research in Pediatric Digestive Disease) Pilot and Feasibility Project Award CHTF/SUB DK078392 (Y.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yana Zavros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, J., Donnelly, J.M., Houghton, J. et al. The Role of Sonic Hedgehog Reemergence During Gastric Cancer. Dig Dis Sci 55, 1516–1524 (2010). https://doi.org/10.1007/s10620-010-1252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1252-z

Keywords

Navigation