Skip to main content
Log in

Generating Ceramide from Sphingomyelin by Alkaline Sphingomyelinase in the Gut Enhances Sphingomyelin-Induced Inhibition of Cholesterol Uptake in Caco-2 Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Sphingomyelin (SM) is present in dietary products and cell plasma membranes. We previously showed that dietary SM inhibited cholesterol absorption in rats. In the intestinal tract, SM is mainly hydrolyzed by alkaline sphingomyelinase (alk-SMase) to ceramide.

Aims

We investigated the influence of SM and its hydrolytic products ceramide and sphingosine on cholesterol uptake in intestinal Caco-2 cells.

Methods

Micelles containing bile salt, monoolein, and 14C-cholesterol were prepared with or without SM, ceramide, or sphingosine. The micelles were incubated with Caco-2 cells, and uptake of radioactive cholesterol was quantified.

Results

We found that confluent monolayer Caco-2 cells expressed NPC1L1, and the uptake of cholesterol in the cells was inhibited by ezetimibe, a specific inhibitor of NPC1L1. Incorporation of SM in the cholesterol micelles inhibited cholesterol uptake dose-dependently; 38% inhibition occurred at an equal mole ratio of SM and cholesterol. The inhibition was further enhanced to 45% by pretreating the cholesterol/SM micelles with recombinant alk-SMase, which hydrolyzed SM in the micelles by 85%, indicating ceramide has stronger inhibitory effects on cholesterol uptake. To confirm this, we further replaced SM in the micelles with ceramide and sphingosine, and found that at equal mole ratio to cholesterol, ceramide exhibited stronger inhibitory effect (50% vs 38%) on cholesterol uptake than SM, whereas sphingosine only had a weak effect at high concentrations.

Conclusion

Both SM and ceramide inhibit cholesterol uptake, the effect of ceramide being stronger than that of SM. Alk-SMase enhances SM-induced inhibition of cholesterol uptake by generating ceramide in the intestinal lumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gylling H. Miettinen TA: The effect of cholesterol absorption inhibition on low density lipoprotein cholesterol level. Atherosclerosis. 1995;117:305–308.

    Article  CAS  PubMed  Google Scholar 

  2. Davis HR. Veltri EP: Zetia: Inhibition of niemann-pick c1 like 1 (npc1l1) to reduce intestinal cholesterol absorption and treat hyperlipidemia. J Atheroscler Thromb. 2007;14:99–108.

    CAS  PubMed  Google Scholar 

  3. Dawson PA. Rudel LL: Intestinal cholesterol absorption. Curr Opin Lipidol. 1999;10:315–320.

    Article  CAS  PubMed  Google Scholar 

  4. Blank M, Cress EA, Smith ZL. Snyder F: Meats and fish consumed in the american diet contain substantial amounts of ether-linked phospholipids. J Nutr. 1992;122:1656–1661.

    CAS  PubMed  Google Scholar 

  5. Zeisel SH, Char D. Sheard NF: Choline, phosphatidylcholine and sphingomyelin in human and bovine milk and infant formulas. J Nutr. 1986;116:50–58.

    CAS  PubMed  Google Scholar 

  6. Nyberg L, Duan RD. Nilsson A: A mutual inhibitory effect on absorption of sphingomyelin and cholesterol. J Nutr Biochem. 2000;11:244–249.

    Article  CAS  PubMed  Google Scholar 

  7. Noh SK. Koo SI: Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. J Nutr. 2004;134:2611–2616.

    CAS  PubMed  Google Scholar 

  8. Eckhardt ER, Wang DQ, Donovan JM, Carey MC. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology. 2002;122:948–956.

    Article  CAS  PubMed  Google Scholar 

  9. Duan RD, Bergman T, Xu N, et al. Nilsson A: Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem. 2003;278:38528–38536.

    Article  CAS  PubMed  Google Scholar 

  10. Nilsson Å. : The presence of sphingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta. 1969;176:339–347.

    CAS  PubMed  Google Scholar 

  11. Duan RD, Hertervig E, Nyberg L, et al. Distribution of alkaline sphingomyelinase activity in human beings and animals. Tissue and species differences. Dig Dis Sci. 1996;41:1801–1806.

    Article  CAS  PubMed  Google Scholar 

  12. Stefan C, Jansen S, Bollen M. Npp-type ectophosphodiesterases: Unity in diversity. Trends Biochem Sci. 2005;30:542–550.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng Y, Nilsson Å, Tömquist E, Duan RD. Purification, characterization and expression of rat intestinal alkaline sphingomyelinase. J Lipid Res. 2002;43:316–324.

    CAS  PubMed  Google Scholar 

  14. Lundgren P, Nilsson Å, Duan RD. Distribution and properties of neutral ceramidase activity in rat intestinal tract. Dig Dis Sci. 2001;46:765–772.

    Article  CAS  PubMed  Google Scholar 

  15. Nilsson A, Duan RD. Absorption and lipoprotein transport of sphingomyelin. J Lipid Res. 2006;47:154–171.

    Article  CAS  PubMed  Google Scholar 

  16. Nyberg L, Duan RD, Axelsson J, Nilsson Å. Identification of an alkaline sphingomyelinase activity in human bile. Biochim Biophys Acta. 1996;1300:42–48.

    PubMed  Google Scholar 

  17. Andersson D, Kotarsky K, Wu J, Agace W, Duan RD. Expression of alkaline sphingomyelinase in yeast cells and anti-inflammatory effects of the expressed enzyme in a rat colitis model. Dig Dis Sci. 2009;54:1440–1448.

    Article  CAS  PubMed  Google Scholar 

  18. Gibson KM, Hoffmann G, Schwall A, et al. 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in cultured fibroblasts from patients with mevalonate kinase deficiency: differential response to lipid supplied by fetal bovine serum in tissue culture medium. J Lipid Res. 1990;31:515–521.

    CAS  PubMed  Google Scholar 

  19. Field FJ, Shreves T, Fujiwara D, Murthy S, Albright E, Mathur SN. Regulation of gene expression and synthesis and degradation of 3-hydroxy-3-methylglutaryl coenzyme a reductase by micellar cholesterolin caco-2 cells. J Lipid Res. 1991;32:1811–1821.

    CAS  PubMed  Google Scholar 

  20. Chen H, Born E, Mathur SN, Johlin FC, Jr, Field FJ. Sphingomyelin content of intestinal cell membranes regulates cholesterol absorption. Evidence for pancreatic and intestinal cell sphingomyelinase activity. Biochem J. 1992;286((Pt 3)):771–777.

    CAS  PubMed  Google Scholar 

  21. Ikeda I, Matsuoka R, Hamada T, et al. Cholesterol esterase accelerates intestinal cholesterol absorption. Biochim Biophys Acta. 2002;1571:34–44.

    CAS  PubMed  Google Scholar 

  22. Bligh EH, Dyer WJ. A rapid method for total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–918.

    CAS  PubMed  Google Scholar 

  23. Davis HR Jr, Zhu LJ, Hoos LM, et al. Niemann-pick c1 like 1 (npc1l1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. J Biol Chem. 2004;279:33586–33592.

    Article  CAS  PubMed  Google Scholar 

  24. Garmy N, Taieb N, Yahi N, Fantini J. Interaction of cholesterol with sphingosine: Physicochemical characterization and impact on intestinal absorption. J Lipid Res. 2005;46:36–45.

    Article  CAS  PubMed  Google Scholar 

  25. Demel RA, Jansen JW, van Dijck PW, van Deenen LL. The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta. 1977;465:1–10.

    Article  CAS  PubMed  Google Scholar 

  26. Maulik PR, Shipley GG. N-palmitoyl sphingomyelin bilayers: Structure and interactions with cholesterol and dipalmitoylphosphatidylcholine. Biochemistry. 1996;35:8025–8034.

    Article  CAS  PubMed  Google Scholar 

  27. Ohlsson L, Palmberg C, Duan RD, Olsson M, Bergman T, Nilsson A: Purification and characterization of human intestinal neutral ceramidase. Biochimie 2007.

  28. Nilsson Å. Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim Biophys Acta. 1968;164:575–584.

    CAS  PubMed  Google Scholar 

  29. Nyberg L, Nilsson Å, Lundgren P, Duan RD. Localization and capacity of sphingomyelin digestion in the rat intestinal tract. J Nutr Biochem. 1997;8:112–118.

    Article  CAS  Google Scholar 

  30. Duan RD. Alkaline sphingomyelinase: An old enzyme with novel implications. Biochim Biophys Acta. 2006;1761:281–291.

    CAS  PubMed  Google Scholar 

  31. Duan RD, Cheng Y, Hansen G, et al. Purification, localization, and expression of human intestinal alkaline sphingomyelinase. J Lipid Res. 2003;44:1241–1250.

    Article  CAS  PubMed  Google Scholar 

  32. Duan RD, Cheng Y, Tauschel HD, Nilsson A. Effects of ursodeoxycholate and other bile salts on levels of rat intestinal alkaline sphingomyelinase: A potential implication in tumorigenesis. Dig Dis Sci. 1998;43:26–32.

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, Liu F, Nilsson A, Duan RD. Pancreatic trypsin cleaves intestinal alkaline sphingomyelinase from mucosa and enhances the sphingomyelinase activity. Am J Physiol Gastrointest Liver Physiol. 2004;287:G967–G973.

    Article  CAS  PubMed  Google Scholar 

  34. Hertervig E, Nilsson A, Nyberg L, Duan RD. Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer. 1997;79:448–453.

    Article  CAS  PubMed  Google Scholar 

  35. Di Marzio L, Di Leo A, Cinque B, et al. Detection of alkaline sphingomyelinase activity in human stool: Proposed role as a new diagnostic and prognostic marker of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:856–862.

    Article  CAS  PubMed  Google Scholar 

  36. Chen H, Born E, Mathur SN, Field FJ. Cholesterol and sphingomyelin syntheses are regulated independently in cultured human intestinal cells, caco-2: Role of membrane cholesterol and sphingomyelin content. J Lipid Res. 1993;34:2159–2167.

    CAS  PubMed  Google Scholar 

  37. Ramstedt B, Slotte JP. Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta. 2006;1758:1945–1956.

    Article  CAS  PubMed  Google Scholar 

  38. Ali MR, Cheng KH, Huang J. Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures. Biochemistry. 2006;45:12629–12638.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Yajun Cheng is thanked for technical assistance. The work was supported by grants from the Albert Påhlsson Foundation, Swedish Nutrition Foundation, and Research Foundation of Lund University and Lund University Hospital. DF is an exchange researcher from the School of Public Health, Sun Yat-sen University, Guangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Dong Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, D., Ohlsson, L., Ling, W. et al. Generating Ceramide from Sphingomyelin by Alkaline Sphingomyelinase in the Gut Enhances Sphingomyelin-Induced Inhibition of Cholesterol Uptake in Caco-2 Cells. Dig Dis Sci 55, 3377–3383 (2010). https://doi.org/10.1007/s10620-010-1202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1202-9

Keywords

Navigation