Skip to main content

Advertisement

Log in

Vulnerable Sites and Changes in Mucin in the Rat Small Intestine After Non-steroidal Anti-inflammatory Drugs Administration

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

The location of mucosal damage and changes in mucin content in the rat small intestine following administration of non-steroidal anti-inflammatory drugs (NSAIDs) have not been well elucidated.

Methods

After subcutaneous administration of loxoprofen sodium (10–40 mg/kg), the small intestinal mucosa of male Wistar rats was evaluated macroscopically, histologically, and immunohistochemically by measuring the total mucin content and immunoreactivity for anti-mucin monoclonal antibody, HCM31, 1, 3, 7, and 14 days later. Changes in the number of enterobacteria invading the mucosa around the lesions were also determined.

Results

Loxoprofen sodium induced erosions and ulcers along the mesenteric margin of the distal jejunum. Early (≤6 h) mucosal lesions were small and round, located between the branches of the mesenteric arteries. In the jejunum, there was a transient increase in the total mucin content, and HCM31-positive mucin in the mucosa around the ulcers increased significantly on days 3 and 7, but in the ileum there were no marked changes and few ulcers. Bacterial translocation following loxoprofen sodium administration significantly increased, according to the site of the intestinal lesions.

Conclusions

Vascularly compromised sites along the jejunal mesenteric margin are vulnerable to NSAIDs-induced damage and show increased numbers of enterobacteria in the NSAIDs-treated mucosa. Increased sialomucin content in the mucus around the lesions may play an important role in the healing of NSAIDs-induced intestinal lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anthony A, Pounder RE, Dhillon AP, Wakefield AJ. Vascular anatomy defines sites of indomethacin induced jejunal ulceration along the mesenteric margin. Gut. 1997;41:763–770.

    Article  CAS  PubMed  Google Scholar 

  2. Iwai T, Ichikawa T, Goso Y, et al. Effects of indomethacin on the rat small intestinal mucosa: immunohistochemical and biochemical studies using antimucin monoclonal antibodies. J Gastroenterol. 2009;44:277–284.

    Article  CAS  PubMed  Google Scholar 

  3. Takeuchi K, Miyazawa T, Tanaka A, Kato S, Kunikata T. Pathogenic importance of intestinal hypermotility in NSAIDs-induced small intestinal damage in rats. Digestion. 2002;66:30–41.

    Article  CAS  PubMed  Google Scholar 

  4. Evans SM, Whittle BJ. Role of bacteria and inducible nitric oxide synthase activity in the systemic inflammatory microvascular response provoked by indomethacin in the rat. Eur J Pharmacol. 2003;461:63–71.

    Article  CAS  PubMed  Google Scholar 

  5. Hagiwara M, Kataoka K, Arimochi H, Kuwahara T, Ohnishi Y. Role of unbalanced growth of gram-negative bacteria in ileal ulcer formation in rats treated with a nonsteroidal anti-inflammatory drug. J Med Invest. 2004;51:43–51.

    Article  PubMed  Google Scholar 

  6. Reuter BK, Davies NM, Wallace JL. Nonsteroidal anti-inflammatory drug enteropathy in rats: role of permeability, bacteria, and enterohepatic circulation. Gastroenterology. 1997;112:109–117.

    Article  CAS  PubMed  Google Scholar 

  7. Misaka E, Yamaguchi T, Iizuka Y, et al. Anti-inflammatory, analgesic and antipyretic activities of sodium 2-(4-(2-oxocycyclopentan-1-ylmethyl) phenyl) propionate dehydrate (CS-600). Pharmacometrics. 1981;21:753–771 (Abstract).

    CAS  Google Scholar 

  8. Suzuki G, Ooishi M, Kato T, et al. Multiple ileal ulcers and an ileal dieulafoy’s lesion induced by loxoprofen sodium. Dig Endosc. 2003;15:243–246.

    Article  Google Scholar 

  9. Allen A, Flemstrom G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol. 2005;288:C1–C19.

    CAS  PubMed  Google Scholar 

  10. Azuumi Y, Ohara S, Ishihara K, Okabe H, Hotta K. Correlation of quantitative changes of gastric mucosal glycoproteins with aspirin-induced gastric damage in rats. Gut. 1980;21:533–536.

    Article  CAS  PubMed  Google Scholar 

  11. Ichikawa T, Ota H, Sugiyama A, et al. Effects of a novel histamine H2-receptor antagonist, lafutidine, on the mucus barrier of human gastric mucosa. J Gastroenterol Hepatol. 2007;22:1800–1805.

    Article  CAS  PubMed  Google Scholar 

  12. Bentley MD, Ortiz MC, Ritman EL, Romero JC. The use of microcomputed tomography to study microvasculature in small rodents. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1267–R1279.

    CAS  PubMed  Google Scholar 

  13. Ota H, Katsuyama T. Alternating laminated array of two types of mucin in the human gastric surface mucous layer. Histochem J. 1992;24:86–92.

    Article  CAS  PubMed  Google Scholar 

  14. Ishihara K, Kurihara M, Goso Y, Ota H, Katsuyama T, Hotta K. Establishment of monoclonal antibodies against carbohydrate moiety of gastric mucins distributed in the different sites and layers of rat gastric mucosa. Glycoconj J. 1996;13:857–864.

    Article  CAS  PubMed  Google Scholar 

  15. Kojima T, Iizuka Y. Favorable feature of loxoprofen sodium, a prodrug, for the irritating effect on gastric mucosa in rats. Jpn Pharmacol Ther. 1988;16:611–619. (In Japanese with English abstract).

    CAS  Google Scholar 

  16. Matsuzawa T, Saito H, Kurihara A, Ninomiya S, Uohama K, Ebine H. Absorption, distribution, metabolism and excretion after dermal application of hyrdogel patch containing loxoprofen sodium in rats. J Clini Ther Med. 2006;22:187–203. (In Japanese with English abstract).

    Google Scholar 

  17. Shimizu K, Koga H, Iida M, Haruma K. Microcirculatory changes in experimental mesenteric longitudinal ulcers of the small intestine in rats. Dig Dis Sci. 2007;52:3019–3028.

    Article  PubMed  Google Scholar 

  18. Kelly DA, Piasecki C, Anthony A, Dhillon AP, Pounder RE, Wakefield AJ. Focal reduction of villous blood flow in early indomethacin enteropathy: a dynamic vascular study in the rat. Gut. 1998;42:366–373.

    Article  CAS  PubMed  Google Scholar 

  19. Hatazawa R, Ohno R, Tanigami M, Tanaka A, Takeuchi K. Roles of endogenous prostaglandins and cyclooxygenase isozymes in healing of indomethacin-induced small intestinal lesions in rats. J Pharmacol Exp Ther. 2006;318:691–699.

    Article  CAS  PubMed  Google Scholar 

  20. Azuumi Y, Ishihara K, Ohara S, Okabe H, Hotta K. Efficacy of anti-ulcer drugs on the recovery of gastric mucosal glycoproteins with aspirin-induced gastric damage in rat. Gastroenterol Jpn. 1981;16:331–334.

    CAS  PubMed  Google Scholar 

  21. Kojima Y, Ishihara K, Ohara S, Saigenji K, Hotta K. Effects of the M1 muscarinic receptor antagonist pirenzepine on gastric mucus glycoprotein in rats with or without ethanol-induced gastric damage. Scand J Gastroenterol. 1992;27:764–768.

    Article  CAS  PubMed  Google Scholar 

  22. Yusuf S, Nok AJ, Ameh DA, Adelaiye AB, Balogun EO. Correlation of gastric mucosal damage with sialic acid profile in rats: effect of hydrochloric acid, pepsin and hypertonic saline. Cell Biochem Funct. 2005;23:339–345.

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe T, Higuchi K, Kobata A, et al. Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like receptor 4 dependent. Gut. 2008;57:181–187.

    Article  CAS  PubMed  Google Scholar 

  24. Kinouchi T, Kataoka K, Bing SR, et al. Culture supernatants of Lactobacillus acidophilus and Bifidobacterium adolescentis repress ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug by suppressing unbalanced growth of aerobic bacteria and lipid peroxidation. Microbiol Immunol. 1998;42:347–355.

    CAS  PubMed  Google Scholar 

  25. Onderdonk AB, Richardson JA, Hammer RE, Taurog JD. Correlation of cecal microflora of HLA-B27 transgenic rats with inflammatory bowel disease. Infect Immun. 1998;66:6022–6023.

    CAS  PubMed  Google Scholar 

  26. Yokota A, Ohno R, Takahira Y, Tanaka A, Takeuchi K. Protective effect of teprenone against indomethacin-induced small intestinal lesion in rats. Jpn Pharmacol Ther. 2005;33:51–61.

    CAS  Google Scholar 

  27. Mizoguchi H, Ogawa Y, Kanatsu K, Tanaka A, Kato S, Takeuchi K. Protective effect of rebamipide on indomethacin-induced intestinal damage in rats. J Gastroenterol Hepatol. 2001;16:1112–1119 (Abstract).

    Article  CAS  PubMed  Google Scholar 

  28. Niwa Y, Nakamura M, Ohmiya N, et al. Efficacy of rebamipide for diclofenac-induced small-intestinal mucosal injuries in healthy subjects: a prospective, randomized, double-blinded, placebo-controlled, cross-over study. J Gastroenterol. 2008;43:270–276.

    Article  CAS  PubMed  Google Scholar 

  29. Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280:G922–G929.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to S. Sugawara, M. Hashimura, and Y. Numata for their technical assistance. This work was supported in part by grants from the Shin-Caterpillar Mitsubishi Co., and the Integrative Research Project of the Graduate School of Medical Sciences, Kitasato University. The authors report no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Ishihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwai, T., Ichikawa, T., Kida, M. et al. Vulnerable Sites and Changes in Mucin in the Rat Small Intestine After Non-steroidal Anti-inflammatory Drugs Administration. Dig Dis Sci 55, 3369–3376 (2010). https://doi.org/10.1007/s10620-010-1185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1185-6

Keywords

Navigation