Skip to main content

Advertisement

Log in

The Role of MAPK-ERK Pathway in 67-kDa Laminin Receptor-Induced FasL Expression in Human Cholangiocarcinoma Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Cancer cells are thought to possess immune evasion properties due to FasL overexpression in many types of human tumors. In the present study, we set out to investigate the role of MAPK-ERK pathway in 67-kDa laminin receptor induced FasL expression and FasL-mediated apoptosis in human cholangiocarcinoma cells.

Methods

The expression of FasL and its promoter activity in cultured cholangiocarcinoma cells were examined after treatment with laminin or transfection with plasmids containing siRNA targeted to 67-kDa laminin receptor. The effects of MAPK-ERK cascade inhibitor and c-Myc inhibition by siRNA on 67-kDa laminin receptor-induced FasL expression were determined. Apoptosis assay was performed to analyze the apoptosis of lymphocytes cocultured with cholangiocarcinoma cells treated with or without MAPK-ERK cascade inhibitor.

Results

Our results revealed that the specific MAPK-ERK cascade inhibitor, PD98059, significantly attenuated phosphorylation of c-Myc on Ser-62 and FasL upregulation in QBC-939 cells and these cells showed decreased cytotoxicity against Fas-sensitive Jurkat T cells. A luciferase reporter assay revealed that FasL promoter activity was significantly reduced in cells treated with PD98059 or transfected with c-Myc siRNA.

Conclusions

Based on these results, we conclude that 67LR induces FasL expression and cytotoxicity against Fas-sensitive Jurkat T cells in human cholangiocarcinoma cells through the phosphorylation of c-Myc on Ser-62 and the subsequent activation of the FasL promoter through the ERK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449–1456.

    Article  CAS  PubMed  Google Scholar 

  2. Walker PR, Saas P, Dietrich PY. Tumor expression of Fas ligand (CD95L) and the consequences. Curr Opin Immunol. 1998;10:564–572.

    Article  CAS  PubMed  Google Scholar 

  3. Asanuma K, Tsuji N, Endoh T, Yagihashi A, Watanabe N. Survivin enhances Fas ligand expression via up-regulation of specificity protein 1-mediated gene transcription in colon cancer cells. J Immunol. 2004;172:3922–3929.

    CAS  PubMed  Google Scholar 

  4. Whiteside TL. The role of death receptor ligands in shaping tumor microenvironment. Immunol Invest. 2007;36:25–46.

    Article  CAS  PubMed  Google Scholar 

  5. Adachi K, Fujino M, Kitazawa Y, et al. Exogenous expression of Fas-ligand or CrmA prolongs the survival in rat liver transplantation. Transplant Proc. 2006;38:2710–2713.

    Article  CAS  PubMed  Google Scholar 

  6. Li Z, Zhang L, Zou S. The “Fas counterattack”: a mechanism for immune evasion in human hilar cholangiocarcinomas. Zhonghua Yi Xue Za Zhi. 2002;82:606–609.

    CAS  PubMed  Google Scholar 

  7. Gao ZF, Li TY, Gao YH, et al. Overexpression of laminin receptor in up regulating Fas ligand in cells of cholangiocarcinoma. Chin J Dig Surg. 2008;6:53–55.

    Google Scholar 

  8. Ryan AE, Shanahan F, O’Connell J, Houston AM. Addressing the “Fas counterattack” controversy: blocking Fas ligand expression suppresses tumor immune evasion of colon cancer in vivo. Cancer Res. 2005;65:9817–9823.

    Article  CAS  PubMed  Google Scholar 

  9. O’Callaghan G, Kelly J, Shanahan F, Houston A. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. Br J Cancer. 2008;99:502–512.

    Article  PubMed  Google Scholar 

  10. Bennett MW, O’Connell J, O’Sullivan GC, et al. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol. 1998;160:5669–5675.

    CAS  PubMed  Google Scholar 

  11. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med. 1996;184:1075–1082.

    Article  PubMed  Google Scholar 

  12. Menard S, Tagliabue E, Colnaghi MI. The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat. 1998;52:137–145.

    Article  CAS  PubMed  Google Scholar 

  13. Satoh K, Narumi K, Abe T, et al. Diminution of 37-kDa laminin binding protein expression reduces tumour formation of murine lung cancer cells. Br J Cancer. 1999;80:1115–1122.

    Article  CAS  PubMed  Google Scholar 

  14. Vacca A, Ribatti D, Roncali L, et al. Melanocyte tumor progression is associated with changes in angiogenesis and expression of the 67-kilodalton laminin receptor. Cancer. 1993;72:455–461.

    Article  CAS  PubMed  Google Scholar 

  15. Sanjuan X, Fernandez PL, Miquel R, et al. Overexpression of the 67-kD laminin receptor correlates with tumour progression in human colorectal carcinoma. J Pathol. 1996;179:376–380.

    Article  CAS  PubMed  Google Scholar 

  16. Givant-Horwitz V, Davidson B, Reich R. Laminin-induced signaling in tumor cells. Cancer Lett. 2005;223:1–10.

    Article  CAS  PubMed  Google Scholar 

  17. Li D, Chen J, Gao Z, et al. 67-kDa laminin receptor in human bile duct carcinoma. Eur Surg Res. 2009;42:168–173.

    Article  CAS  PubMed  Google Scholar 

  18. Gloe T, Riedmayr S, Sohn HY, Pohl U. The 67-kDa laminin-binding protein is involved in shear stress-dependent endothelial nitric-oxide synthase expression. J Biol Chem. 1999;274:15996–16002.

    Article  CAS  PubMed  Google Scholar 

  19. Givant-Horwitz V, Davidson B, Reich R. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res. 2004;64:3572–3579.

    Article  CAS  PubMed  Google Scholar 

  20. Choi C, Xu X, Oh JW, et al. Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Cancer Res. 2001;61:3084–3091.

    CAS  PubMed  Google Scholar 

  21. Shinohara H, Yagita H, Ikawa Y, Oyaizu N. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res. 2000;60:1766–1772.

    CAS  PubMed  Google Scholar 

  22. Kavurma MM, Khachigian LM. Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ. 2003;10:36–44.

    Article  CAS  PubMed  Google Scholar 

  23. Sansom OJ, Meniel VS, Muncan V, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446:676–679.

    Article  CAS  PubMed  Google Scholar 

  24. Bermudez Y, Yang H, Cheng JQ, Kruk PA. Pyk2/ERK 1/2 mediate Sp1- and c-Myc-dependent induction of telomerase activity by epidermal growth factor. Growth Factors. 2008;26:1–11.

    Article  CAS  PubMed  Google Scholar 

  25. Wang SG, Chen CH, Li DJ, Li K. Effect of down regulation of laminin receptor on urokinase-type plasminogen activator expression in human bile duct carcinoma cells. Zhonghua Yi Xue Za Zhi. 2004;84:1642–1644.

    CAS  PubMed  Google Scholar 

  26. Kasibhatla S, Brunner T, Genestier L, et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell. 1998;1:543–551.

    Article  CAS  PubMed  Google Scholar 

  27. Brunner T, Kasibhatla S, Pinkoski MJ, et al. Expression of Fas ligand in activated T cells is regulated by c-Myc. J Biol Chem. 2000;275:9767–9772.

    Article  CAS  PubMed  Google Scholar 

  28. Kasibhatla S, Beere HM, Brunner T, et al. A ‘non-canonical’ DNA-binding element mediates the response of the Fas-ligand promoter to c-Myc. Curr Biol. 2000;10:1205–1208.

    Article  CAS  PubMed  Google Scholar 

  29. Chanprasert S, Geddis AE, Barroga C, et al. Thrombopoietin (TPO) induces c-myc expression through a PI3 K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR in TPO-dependent cell lines and primary megakaryocytes. Cell Signal. 2006;18:1212–1218.

    Article  CAS  PubMed  Google Scholar 

  30. Wang CL, Ng TB, Cao XH, et al. CLP induces apoptosis in human leukemia K562 cells through Ca(2 +) regulating extracellular-related protein kinase ERK activation. Cancer Lett. 2009;276:221–227.

    Article  CAS  PubMed  Google Scholar 

  31. Patarroyo M, Tryggvason K, Virtanen I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol. 2002;12:197–207.

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki T, Fassler R, Hohenester E. Laminin: the crux of basement membrane assembly. J Cell Biol. 2004;164:959–963.

    Article  CAS  PubMed  Google Scholar 

  33. Wehrle-Haller B, Imhof BA. Integrin-dependent pathologies. J Pathol. 2003;200:481–487.

    Article  CAS  PubMed  Google Scholar 

  34. Kohno M, Pouyssegur J. Pharmacological inhibitors of the ERK signaling pathway: application as anticancer drugs. Prog Cell Cycle Res. 2003;5:219–224.

    PubMed  Google Scholar 

  35. Pereira DB, Carvalho AP, Duarte CB. Non-specific effects of the MEK inhibitor PD098059 and U0126 on glutamate release from hippocampal synaptosomes. Neuropharmacology. 2002;42:9–19.

    Article  CAS  PubMed  Google Scholar 

  36. Sears R, Nuckolls F, Haura E, et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14:2501–2514.

    Article  CAS  PubMed  Google Scholar 

  37. Berno V, Porrini D, Castiglioni F, et al. The 67-kDa laminin receptor increases tumor aggressiveness by remodeling laminin-1. Endocr Relat Cancer. 2005;12:393–406.

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh S, Stack MS. Proteolytic modification of laminins: functional consequences. Microsc Res Tech. 2000;51:238–246.

    Article  CAS  PubMed  Google Scholar 

  39. Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol. 2004;16:558–564.

    Article  CAS  PubMed  Google Scholar 

  40. Schenk S, Quaranta V. Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol. 2003;13:366–375.

    Article  CAS  PubMed  Google Scholar 

  41. Eberle J, Fecker LF, Hossini AM, et al. CD95/Fas signaling in human melanoma cells: conditional expression of CD95L/FasL overcomes the intrinsic apoptosis resistance of malignant melanoma and inhibits growth and progression of human melanoma xenotransplants. Oncogene. 2003;22:9131–9141.

    Article  CAS  PubMed  Google Scholar 

  42. Gao CF, Xie Q, Su YL, et al. Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci USA. 2005;102:10528–10533.

    Article  CAS  PubMed  Google Scholar 

  43. Taj MM, Tawil RJ, Engstrom LD, et al. Mxi1, a Myc antagonist, suppresses proliferation of DU145 human prostate cells. Prostate. 2001;47:194–204.

    Article  CAS  PubMed  Google Scholar 

  44. Wang YH, Liu S, Zhang G, et al. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo. Breast Cancer Res. 2005;7:R220–R228.

    Article  CAS  PubMed  Google Scholar 

  45. Jain M, Arvanitis C, Chu K, et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science. 2002;297:102–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (No. 30772109). The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Guang Wang.

Additional information

Shi-Gang Duan, Long Cheng, and Da-Jiang Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, SG., Cheng, L., Li, DJ. et al. The Role of MAPK-ERK Pathway in 67-kDa Laminin Receptor-Induced FasL Expression in Human Cholangiocarcinoma Cells. Dig Dis Sci 55, 2844–2852 (2010). https://doi.org/10.1007/s10620-009-1121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-1121-9

Keywords

Navigation