Skip to main content

Advertisement

Log in

Butyrate-Induced Cell Death and Differentiation Are Associated with Distinct Patterns of ROS in HT29-Derived Human Colon Cancer Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

To investigate the role of reactive oxygen species (ROS) induced by butyrate in tumor cells, we compared HT29R, an HT29-derived human colon cancer cell line refractory to butyrate-induced cell differentiation but highly sensitive to cell death, with the differentiation-positive HT29-12 and HT29-21 cell lines (exhibiting low sensitivity to butyrate-induced cell death), with respect to levels of butyrate-induced free radicals (FRs), ROS, and H2O2. Dose-dependent increase of FRs (as determined by electron spin resonance spectroscopy) and ROS (dichlorofluorescein assay) was induced in HT29R, but not in HT29-12 and HT29-21 cells, where, in contrast to HT29R, a dose-dependent increase of H2O2 release (phenol red assay) was induced by butyrate. The mode of butyrate-induced cell death in HT29R cells was of a mixed type with necrosis predominating, which, however, switched to apoptosis as the major type of cell death in the presence of the drugs 1,5-dihydroxyisoquinoline, resveratrol, or cyclosporine A. The results suggest that FRs and ROS induced by butyrate in HT29R cells are products of cell death, while H2O2 induced in HT29-12 and HT29-21 cells is functionally related to cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Giardina C, Inan MS. Nonsteroidal anti-inflammatory drugs, short-chain fatty acids, and reactive oxygen metabolism in human colorectal cancer cells. Biochim Biophys Acta. 1998;1401:277–288. doi:10.1016/S0167-4889(97)00140-7.

    Article  CAS  PubMed  Google Scholar 

  2. Ruefli AA, Ausserlechner MJ, Bernhard D, et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA. 2001;98:10833–10838. doi:10.1073/pnas.191208598.

    Article  CAS  PubMed  Google Scholar 

  3. Rosato RR, Almenara JJ, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21 CIP1/WAF1. Cancer Res. 2003;63:3637–3645.

    CAS  PubMed  Google Scholar 

  4. Moreira JMA, Scheipers P, Sørensen P. The histone deacetylase inhibitor trichostatin A modulates CD4+ T cell responses. BMC Cancer. 2003;3:30. http://www.biomedcentral.com/1471-2407/3/30. doi:10.1186/1471-2407-3-30.

  5. Ungerstedt JS, Sowa Y, Xu WS, et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA. 2005;102:673–678. doi:10.1073/pnas.0408732102.

    Article  CAS  PubMed  Google Scholar 

  6. Csordas A. Toxicology of butyrate and short-chain fatty acids. In: Hill MJ, ed. Role of Gut Bacteria in Human Toxicology and Pharmacology. London: Taylor and Francis; 1995:105–127.

  7. Kruh J, Defer L, Tichonicky L. Effects of butyrate on cell proliferation and gene expression. In: Cummings JH, Rombeau JL, Sakata T, eds. Physiological and Clinical Aspects of Short-Chain Fatty Acids. Cambridge: Cambridge University Press; 1995:275–288.

    Google Scholar 

  8. Burgess A, Ruefli A, Beamish H, et al. Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene. 2004;23:6693–6701. doi:10.1038/sj.onc.1207893.

    Article  CAS  PubMed  Google Scholar 

  9. Lindemann RK, Gabrielli B, Johnstone RW. Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle. 2004;3:779–788.

    CAS  PubMed  Google Scholar 

  10. Lesuffleur T, Violette S, Vasile-Pandrea I, et al. Resistance to high concentrations of methotrexate and 5-fluorouracil of differentiated HT-29 colon-cancer cells is restricted to cells of enterocytic phenotype. Int J Cancer. 1998;76:383–392. doi:10.1002/(SICI)1097-0215(19980504)76:3≤383::AID-IJC16≥3.0.CO;2-C.

    Article  CAS  PubMed  Google Scholar 

  11. Nicoletti I, Migliorati G, Pagliacci MC, Grignanai F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991;139:271–279. doi:10.1016/0022-1759(91)90198-O.

    Article  CAS  PubMed  Google Scholar 

  12. Quaio L, Hanif R, Sphicas SJ, Shiff B, Rigas B. Effect of aspirin on induction of apoptosis in HT-29 human colon adenocarcinoma cells. Biochem Pharmacol. 1998;55:53–64. doi:10.1016/S0006-2952(97)00400-0.

    Article  Google Scholar 

  13. Shulyakowskaya T, Sümegi L, Gál D. In vivo experimental studies on the role of free radicals in photodynamic therapy I. Measurement of the steady state concentration of free radicals in tumor tissues of mice. Biochem Biophys Res Commun. 1993;195:581–587. doi:10.1006/bbrc.1993.2085.

    Article  Google Scholar 

  14. Baud L, Perez J, Ardaillou R. Dexamethasone and hydrogen peroxide production by mesangial cells during phagocytosis. Am J Physiol. 1986;250:596–604.

    Google Scholar 

  15. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968;25:191–205. doi:10.1016/0003-2697(68)90092-4.

    Article  Google Scholar 

  16. Kosower NS, Song KR, Kosower EM, Correa W. Glutathione II. Chemical aspects of azoester procedure for oxidation to disulfide. Biochim Biophys Acta. 1969;192:8–14.

    CAS  PubMed  Google Scholar 

  17. Kirlin WG, Cai J, Thompson SA, Diaz D, Kavanagh TJ, Jones DP. Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med. 1999;27:1208–1218. doi:10.1016/S0891-5849(99)00145-8.

    Article  CAS  PubMed  Google Scholar 

  18. Zamareva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y. Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ. 2005;12:1390–1397. doi:10.1038/sj.cdd.4401661.

    Article  Google Scholar 

  19. Liu JJ, Huang BH, Zhang J, Carson DD, Hooi SC. Repression of HIP/RPL29 expression induces differentiation in colon cancer cells. J Cell Physiol. 2006;207:287–292. doi:10.1002/jcp.20589.

    Article  CAS  PubMed  Google Scholar 

  20. Butt AJ, Hague A, Paraskeva C. Butyrate- but not TGFβ1-induced apoptosis of colorectal adenoma cells is associated with increased expression of the differentiation markers E-cadherin and alkaline phosphatase. Cell Death Differ. 1997;4:725–732. doi:10.1038/sj.cdd.4400293.

    Article  CAS  PubMed  Google Scholar 

  21. Orchel A, Dzierżewicz Z, Parfiniewicz B, Węglarz L, Wilczok T. Butyrate-induced differentiation of colon cancer cells is PKC and JNK dependent. Dig Dis Sci. 2005;50:490–498. doi:10.1007/s10620-005-2463-6.

    Article  CAS  PubMed  Google Scholar 

  22. Pervaiz S, Clement MV. Superoxid anion: oncogenic reactive oxygen species? Int J Biochem Cell Biol. 2007;39:1297–1304. doi:10.1016/j.biocel.2007.04.007.

    Article  CAS  PubMed  Google Scholar 

  23. Burdon RH. Control of cell proliferation by reactive oxygen species. Free Radic Biol Med. 1995;18:775–794. doi:10.1016/0891-5849(94)00198-S.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22:269–285. doi:10.1016/S0891-5849(96)00275-4.

    Article  CAS  PubMed  Google Scholar 

  25. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants of the Hungarian Research Fund OTKA K 76133, OTKA T 49753, and the Österreichische Forschungsgemeinschaft (Project MOEL 339). We are indebted to Ms. Rajam Csordas-Iyer for critical reading and linguistic corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Csordas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domokos, M., Jakus, J., Szeker, K. et al. Butyrate-Induced Cell Death and Differentiation Are Associated with Distinct Patterns of ROS in HT29-Derived Human Colon Cancer Cells. Dig Dis Sci 55, 920–930 (2010). https://doi.org/10.1007/s10620-009-0820-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0820-6

Keywords

Navigation