Skip to main content

Advertisement

Log in

Molecular Biomarkers Correlate with Disease-Free Survival in Patients with Anal Canal Carcinoma Treated with Chemoradiation

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Large primary tumor and clinical nodal involvement in patients with anal carcinoma treated with chemoradiation are associated with poor disease-free survival (DFS). However, the outcome in individual patient is unpredictable. We hypothesized that biomarkers related to chemotherapy and/or radiation resistance would be associated with DFS. We analyzed clinical and biomarker data in 30 patients with anal carcinoma who had chemoradiation. Patient selection was based on the availability of untreated cancer for biomarkers, completion of prescribed chemoradiation, and patient outcomes (~50% disease-free) nonrepresentative of published cohorts but conducive to biomarker discovery. Ten biomarkers, Ki67, human telomerase (hTERT), epidermal growth factor receptor (EGFR), p53, p16, Bcl-2, vascular endothelial growth factor (VEGF), nuclear factor kappa-B (NF-κB), SHH, and Gli-1, were studied. Raw data as continuous variable (only EGFR was trichotomized) were analyzed. Univariate and multivariate Cox models were utilized to assess relationship between DFS and biomarkers. Twenty-three of 30 patients were women, tumor diameter was >5 cm in 30, and 37% had clinically positive nodes. Fourteen (30%) patients had a DFS event after chemoradiation. In univariate analysis, NF-κB (P = 0.01), SHH (P = 0.02), Gli-1 (P = 0.02), and tumor diameter (P = 0.03) were significantly associated with DFS, and Ki67 (P = 0.07) was marginally significant. In multivariate analysis, tumor diameter (P = 0.003), Ki67 (P = 0.005), NF-κB (P = 0.002), SHH (P = 0.02), and Gli-1 (P = 0.02) were significantly associated with DFS. Our data, albeit preliminary, suggest that several biomarkers (Ki67, NF-κB, SHH, and Gli-1) are associated with DFS. Upon further expansion and validation, these results may provide a biomarker-based understanding of heterogeneous clinical biology of patients with anal carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96. doi:10.3322/CA.2007.0010.

    Article  PubMed  Google Scholar 

  2. Nigro ND, Seydel HG, Considine B, Vaitkevicius VK, Leichman L, Kinzie JJ. Combined preoperative radiation and chemotherapy for squamous cell carcinoma of the anal canal. Cancer. 1983;51(10):1826–1829. doi:10.1002/1097-0142(19830515)51:10<1826::AID-CNCR2820511012>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  3. Sischy B, Doggett RL, Krall JM, et al. Definitive irradiation and chemotherapy for radiosensitization in management of anal carcinoma: interim report on Radiation Therapy Oncology Group study no. 8314. J Natl Cancer Inst. 1989;81(11):850–856.

    Article  CAS  PubMed  Google Scholar 

  4. Nilsson PJ, Svensson C, Goldman S, Ljungqvist O, Glimelius B. Epidermoid anal cancer: a review of a population-based series of 308 consecutive patients treated according to prospective protocols. Int J Radiat Oncol Biol Phys. 2005;61(1):92–102. doi:10.1016/j.ijrobp.2004.03.034.

    PubMed  Google Scholar 

  5. Svensson C, Goldman S, Friberg B. Radiation treatment of epidermoid cancer of the anus. Int J Radiat Oncol Biol Phys. 1993;27(1):67–73.

    CAS  PubMed  Google Scholar 

  6. Ajani JA, Winter KA, Gunderson LL, et al. Fluorouracil, mitomycin, and radiotherapy vs fluorouracil, cisplatin, and radiotherapy for carcinoma of the anal canal: a randomized controlled trial. JAMA. 2008;299(16):1914–1921. doi:10.1001/jama.299.16.1914.

    Article  CAS  PubMed  Google Scholar 

  7. Chin L, Gray JW. Translating insights from the cancer genome into clinical practice. Nature. 2008;452(7187):553–563. doi:10.1038/nature06914.

    Article  CAS  PubMed  Google Scholar 

  8. Sawyers CL. The cancer biomarker problem. Nature. 2008;452(7187):548–552. doi:10.1038/nature06913.

    Article  CAS  PubMed  Google Scholar 

  9. van’t Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature. 2008;452(7187):564–570. doi:10.1038/nature06915.

    Article  Google Scholar 

  10. Vogelstein B. Cancer. A deadly inheritance. Nature. 1990;348(6303):681–682. doi:10.1038/348681a0.

    Article  CAS  PubMed  Google Scholar 

  11. Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev. 2008;18(1):19–26. doi:10.1016/j.gde.2008.01.020.

    Article  CAS  PubMed  Google Scholar 

  12. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18(18):2195–2224. doi:10.1101/gad.1228704.

    Article  CAS  PubMed  Google Scholar 

  13. Rosette C, Karin M. Cytoskeletal control of gene expression: depolymerization of microtubules activates NF-kappa B. J Cell Biol. 1995;128(6):1111–1119. doi:10.1083/jcb.128.6.1111.

    Article  CAS  PubMed  Google Scholar 

  14. Bourgarel-Rey V, Vallee S, Rimet O, et al. Involvement of nuclear factor kappaB in c-Myc induction by tubulin polymerization inhibitors. Mol Pharmacol. 2001;59(5):1165–1170.

    CAS  PubMed  Google Scholar 

  15. Bottero V, Busuttil V, Loubat A, et al. Activation of nuclear factor kappaB through the IKK complex by the topoisomerase poisons SN38 and doxorubicin: a brake to apoptosis in HeLa human carcinoma cells. Cancer Res. 2001;61(21):7785–7791.

    CAS  PubMed  Google Scholar 

  16. Tergaonkar V, Bottero V, Ikawa M, Li Q, Verma IM. IkappaB kinase-independent IkappaBalpha degradation pathway: functional NF-kappaB activity and implications for cancer therapy. Mol Cell Biol. 2003;23(22):8070–8083. doi:10.1128/MCB.23.22.8070-8083.2003.

    Article  CAS  PubMed  Google Scholar 

  17. Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 2005;5(4):297–309. doi:10.1038/nrc1588.

    Article  CAS  PubMed  Google Scholar 

  18. Russell JS, Tofilon PJ. Radiation-induced activation of nuclear factor-kappaB involves selective degradation of plasma membrane-associated I(kappa)B(alpha). Mol Biol Cell. 2002;13(10):3431–3440. doi:10.1091/mbc.E02-05-0252.

    Article  CAS  PubMed  Google Scholar 

  19. Brach MA, Hass R, Sherman ML, Gunji H, Weichselbaum R, Kufe D. Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest. 1991;88(2):691–695. doi:10.1172/JCI115354.

    Article  CAS  PubMed  Google Scholar 

  20. Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81–137. doi:10.1016/S0065-230X(08)60785-X.

    Article  CAS  PubMed  Google Scholar 

  21. White E. Life, death, and the pursuit of apoptosis. Genes Dev. 1996;10(1):1–15. doi:10.1101/gad.10.1.1.

    Article  CAS  PubMed  Google Scholar 

  22. Meulmeester E, Jochemsen AG. p53: a guide to apoptosis. Curr Cancer Drug Targets. 2008;8(2):87–97. doi:10.2174/156800908783769337.

    Article  CAS  PubMed  Google Scholar 

  23. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science. 1985;228(4706):1440–1443. doi:10.1126/science.3874430.

    Article  CAS  PubMed  Google Scholar 

  24. Reed JC. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood. 2008;111(7):3322–3330. doi:10.1182/blood-2007-09-078162.

    Article  CAS  PubMed  Google Scholar 

  25. Miyashita T, Reed JC. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood. 1993;81(1):151–157.

    CAS  PubMed  Google Scholar 

  26. Miyashita T, Reed JC. bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res. 1992;52(19):5407–5411.

    CAS  PubMed  Google Scholar 

  27. Campos L, Rouault JP, Sabido O, et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood. 1993;81(11):3091–3096.

    CAS  PubMed  Google Scholar 

  28. Reed JC. Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol. 1995;7(6):541–546. doi:10.1097/00001622-199511000-00012.

    Article  CAS  PubMed  Google Scholar 

  29. Sharpless E, Chin L. The INK4a/ARF locus and melanoma. Oncogene. 2003;22(20):3092–3098. doi:10.1038/sj.onc.1206461.

    Article  CAS  PubMed  Google Scholar 

  30. Sharpless NE. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res. 2005;576(1–2):22–38. doi:10.1016/j.mrfmmm.2004.08.021.

    CAS  PubMed  Google Scholar 

  31. Banerjee D, Ercikan-Abali E, Waltham M, et al. Molecular mechanisms of resistance to antifolates, a review. Acta Biochim Pol. 1995;42(4):457–464.

    CAS  PubMed  Google Scholar 

  32. Hochhauser D, Schnieders B, Ercikan-Abali E, et al. Effect of cyclin D1 overexpression on drug sensitivity in a human fibrosarcoma cell line. J Natl Cancer Inst. 1996;88(18):1269–1275. doi:10.1093/jnci/88.18.1269.

    Article  CAS  PubMed  Google Scholar 

  33. O’Neill CJ, McCluggage WG. p16 expression in the female genital tract and its value in diagnosis. Adv Anat Pathol. 2006;13(1):8–15. doi:10.1097/01.pap.0000201828.92719.f3.

    Article  PubMed  Google Scholar 

  34. Kalof AN, Cooper K. p16INK4a immunoexpression: surrogate marker of high-risk HPV and high-grade cervical intraepithelial neoplasia. Adv Anat Pathol. 2006;13(4):190–194. doi:10.1097/00125480-200607000-00006.

    Article  CAS  PubMed  Google Scholar 

  35. Lum L, Beachy PA. The Hedgehog response network: sensors, switches, and routers. Science. 2004;304(5678):1755–1759. doi:10.1126/science.1098020.

    Article  CAS  PubMed  Google Scholar 

  36. Kasper M, Regl G, Frischauf AM, Aberger F. GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur J Cancer. 2006;42(4):437–445. doi:10.1016/j.ejca.2005.08.039.

    Article  CAS  PubMed  Google Scholar 

  37. Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003;3(12):903–911. doi:10.1038/nrc1229.

    Article  PubMed  Google Scholar 

  38. Shafaee Z, Schmidt H, Du W, Posner M, Weichselbaum R. Cyclopamine increases the cytotoxic effects of paclitaxel and radiation but not cisplatin and gemcitabine in Hedgehog expressing pancreatic cancer cells. Cancer Chemother Pharmacol. 2006;58(6):765–770. doi:10.1007/s00280-006-0227-4.

    Article  CAS  PubMed  Google Scholar 

  39. Sims-Mourtada J, Izzo JG, Apisarnthanarax S, et al. Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response. Clin Cancer Res. 2006;12(21):6565–6572. doi:10.1158/1078-0432.CCR-06-0176.

    Article  CAS  PubMed  Google Scholar 

  40. Sims-Mourtada J, Izzo JG, Ajani J, Chao KS. Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene. 2007;26:5674–5679. doi:10.1038/sj.onc.1210356.

    Article  CAS  PubMed  Google Scholar 

  41. Jain RK. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology. 2005;19(Suppl 3(4)):7–16. Williston Park.

    PubMed  Google Scholar 

  42. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer. 2008;8(7):545–554. doi:10.1038/nrc2419.

    Article  CAS  PubMed  Google Scholar 

  43. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–2845. doi:10.1200/JCO.2007.15.1829.

    Article  CAS  PubMed  Google Scholar 

  44. Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106(6):661–673. doi:10.1016/S0092-8674(01)00492-5.

    Article  CAS  PubMed  Google Scholar 

  45. Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol. 1998;8(5):279–282. doi:10.1016/S0960-9822(98)70109-5.

    Article  CAS  PubMed  Google Scholar 

  46. Rubio MA, Kim SH, Campisi J. Reversible manipulation of telomerase expression and telomere length. Implications for the ionizing radiation response and replicative senescence of human cells. J Biol Chem. 2002;277(32):28609–28617. doi:10.1074/jbc.M203747200.

    Article  CAS  PubMed  Google Scholar 

  47. Pirzio LM, Freulet-Marriere MA, Bai Y, et al. Human fibroblasts expressing hTERT show remarkable karyotype stability even after exposure to ionizing radiation. Cytogenet Genome Res. 2004;104(1–4):87–94. doi:10.1159/000077470.

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed A, Tollefsbol TO. Telomerase, telomerase inhibition, and cancer. J Anti Aging Med. 2003;6(4):315–325. doi:10.1089/109454503323028911.

    Article  CAS  PubMed  Google Scholar 

  49. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19(56):6550–6565. doi:10.1038/sj.onc.1204082.

    Article  CAS  PubMed  Google Scholar 

  50. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12(18):5268–5272. doi:10.1158/1078-0432.CCR-05-1554.

    Article  CAS  PubMed  Google Scholar 

  51. Riesterer O, Milas L, Ang KK. Use of molecular biomarkers for predicting the response to radiotherapy with or without chemotherapy. J Clin Oncol. 2007;25(26):4075–4083. doi:10.1200/JCO.2007.11.8497.

    Article  CAS  PubMed  Google Scholar 

  52. Spyratos F, Ferrero-Pous M, Trassard M, et al. Correlation between MIB-1 and other proliferation markers: clinical implications of the MIB-1 cutoff value. Cancer. 2002;94(8):2151–2159. doi:10.1002/cncr.10458.

    Article  CAS  PubMed  Google Scholar 

  53. Das P, Bhatia S, Eng C, et al. Predictors and patterns of recurrence after definitive chemoradiation for anal cancer. Int J Radiat Oncol Biol Phys. 2007;68(3):794–800. doi:10.1016/j.ijrobp.2006.12.052.

    PubMed  Google Scholar 

  54. Izzo JG, Malhotra U, Wu TT, et al. Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. J Clin Oncol. 2006;24(5):748–754. doi:10.1200/JCO.2005.03.8810.

    Article  CAS  PubMed  Google Scholar 

  55. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Stat Assoc. 1958;53:457–481. doi:10.2307/2281868.

    Article  Google Scholar 

  56. Cox DR. Regression models and life tables (with discussion). J R Stat Soc B. 1972;34:187–220.

    Google Scholar 

  57. Therneau TM, Grambsch PM. P. M. Modeling Survival Data, Extending the Cox Model. New York: Springer-Verlag; 2000.

    Google Scholar 

  58. Venables WN, Ripley BD. Modern Applied Statistics with Splus. 3rd ed. New York: Springer; 1999.

    Google Scholar 

  59. Zhang J, Martins CR, Fansler ZB, et al. DNA methylation in anal intraepithelial lesions and anal squamous cell carcinoma. Clin Cancer Res. 2005;11(18):6544–6549. doi:10.1158/1078-0432.CCR-05-0374.

    Article  CAS  PubMed  Google Scholar 

  60. Patel H, Polanco-Echeverry G, Segditsas S, et al. Activation of AKT and nuclear accumulation of wild type TP53 and MDM2 in anal squamous cell carcinoma. Int J Cancer. 2007;121(12):2668–2673. doi:10.1002/ijc.23028.

    Article  CAS  PubMed  Google Scholar 

  61. Nilsson PJ, Lenander C, Rubio C, Auer G, Ljungqvist O, Glimelius B. Prognostic significance of Cyclin A in epidermoid anal cancer. Oncol Rep. 2006;16(3):443–449.

    CAS  PubMed  Google Scholar 

  62. Bruland O, Fluge O, Immervoll H, et al. Gene expression reveals two distinct groups of anal carcinomas with clinical implications. Br J Cancer. 2008;98(7):1264–1273. doi:10.1038/sj.bjc.6604285.

    Article  CAS  PubMed  Google Scholar 

  63. Alvarez G, Perry A, Tan BR, Wang HL. Expression of epidermal growth factor receptor in squamous cell carcinomas of the anal canal is independent of gene amplification. Mod Pathol. 2006;19(7):942–949. doi:10.1038/modpathol.3800608.

    Article  CAS  PubMed  Google Scholar 

  64. Gervaz P, Hahnloser D, Wolff BG, et al. Molecular biology of squamous cell carcinoma of the anus: a comparison of HIV-positive and HIV-negative patients. J Gastrointest Surg. 2004;8(8):1024–1030. doi:10.1016/j.gassur.2004.08.013. discussion 31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part with grants from U.T.M.D. Anderson Cancer Center, The Cantu, Park, Dallas, and Smith Families, and the Rivercreek Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaffer A. Ajani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajani, J.A., Wang, X., Izzo, J.G. et al. Molecular Biomarkers Correlate with Disease-Free Survival in Patients with Anal Canal Carcinoma Treated with Chemoradiation. Dig Dis Sci 55, 1098–1105 (2010). https://doi.org/10.1007/s10620-009-0812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0812-6

Keywords

Navigation