Skip to main content
Log in

Methionine Deficiency and Hepatic Injury in a Dietary Steatohepatitis Model

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Methionine (Meth) is an essential amino acid involved in DNA methylation and glutathione biosynthesis. We examined the effect of Meth on the development of steatohepatitis. Rats were fed (five weeks) amino acid-based Meth-choline-sufficient (A-MCS) or total deficient (MCD) diets and gavaged daily (two weeks) with vehicle (B-vehicle/MCD), or Meth replacement (C-Meth/MCD). To assess the effect of short-term deficiency, after three weeks one MCS group was fed a deficient diet (D-MCS/MCD). Animals fed the deficient diet for two weeks lost (29%) weight and after five weeks weighed one third as much as those on the sufficient diet, and also developed anemia (P < 0.01). Hepatic transaminases progressively increased from two to five weeks (P < 0.01), leading to severe hepatic pathology. Meth administration normalized hematocrit, improved weight (P < 0.05), and suppressed abnormal enzymes activities (P < 0.01). Meth administration improved blood and hepatic glutathione (GSH), S-adenosylmethionine (SAMe), and hepatic lesions (P < 0.01). The deficient diet significantly upregulated proinflammatory and fibrotic genes, which was ameliorated by Meth administration. These data support a pivotal role for methionine in the pathogenesis of the dietary model of Meth-choline-deficient (MCD) steatohepatitis (NASH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BCP:

Bromochlorophenol

cDNA:

Complementary DNA

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

IL-1β- IL-6:

Interleukin-1beta and interleukin-6

MCD:

Methionine-choline-deficient diet

MCS:

Methionine-choline-sufficient diet

MMPs:

Tissue matrix metalloproteinases

Meth:

Methionine

mRNA:

Messenger RNA

NAFL:

Non-alcoholic fatty liver

NASH:

Non-alcoholic steatohepatitis

PCR:

Polymerase chain reaction

SAMe:

S-adenosylmethionine

SOCS:

Silencing suppressor of cytokine signaling

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor alpha

References

  1. Lee RG, Keeffe EB (1999) Non-alcoholic fatty liver: causes and complications. In: J Bircher, Benhamou JP, McIntyre M et al (eds) Oxford, textbook of clinical hepatology, 2nd edn. Oxford University Press, Oxford, UK, pp 1251–1257

  2. Kumar KS, Malet PF (2000) Nonalcoholic steatohepatitis. Mayo Clin Proc 75:733–739

    Article  PubMed  CAS  Google Scholar 

  3. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    Article  PubMed  CAS  Google Scholar 

  4. Fong DG, Nehra V, Lindor KD, Buchman AL (2000) Metabolic and nutritional considerations in non-alcoholic fatty liver. Hepatology 32:3–10

    Article  PubMed  CAS  Google Scholar 

  5. Begriche K (2006) Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6:1–28

    Article  PubMed  CAS  Google Scholar 

  6. Farrell GC (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43:S99–S112

    Article  PubMed  CAS  Google Scholar 

  7. Matteoni CA, Younossi Z, Gramlich T, Boparai N, Liu YC, McCullough AJ (1999) Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116:1413–1419

    Article  PubMed  CAS  Google Scholar 

  8. Powell E, Cooksley WG, Hanson R et al (1990) The natural history of nonalcoholic steatohepatitis: a followup study of forty-two patients for up to 21 years. Hepatology 11:74–80

    Article  PubMed  Google Scholar 

  9. Maheshwari A (2006) Cryptogenic cirrhosis and NAFLD: are they related? Am J Gastroenterol 101:664–668

    Article  PubMed  Google Scholar 

  10. Pessayre D, Fromenty B (2005) NASH: a mitochondrial disease. J Hepatology 42:928–940

    Article  CAS  Google Scholar 

  11. Caldwell S, Chang Y, Nakamoto R, Krugner-Higby L (2004) Mitochondria in nonalcoholic fatty liver disease. Clin Liver Dis 8:595–617

    Article  PubMed  Google Scholar 

  12. Browning JD, Horton J (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Invest, 114:147–152

    PubMed  CAS  Google Scholar 

  13. Pessayre D, Feldman G, Haouzi D, Fau A, Moreau A, Neuman MG (1999) Hepatocyte apoptosis triggered by natural substances (cytokines, other endogenous molecules and foreign toxins). In: Cameron RG, Fauer G (eds) Handbook of experimental pharmacology: apoptosis modulation by drugs. vol 142, Chapter 3. Springer Verlag Publishers, Heidelberg, 69–109

  14. Weikert M, Pfeiffer A (2006) Signalling mechanisms linking hepatic glucose and lipid metabolism. Diabeteologia 49:1732–1741

    Article  CAS  Google Scholar 

  15. Reddy J, Sambasiva Rao M (2006) Lipid metabolism and liver inflammation. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:G852–G858

    Article  PubMed  CAS  Google Scholar 

  16. Neuman MG, Valentino K (2003) Caspases, S-Adenosyl methionine, and anti-tumor necrosis factor alpha signaling for protection in ethanol induced apoptosis in normal human hepatocyte. J Hepatol 38(suppl 2, abs. 686):197

    Google Scholar 

  17. Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology 37:1202–1219

    Article  PubMed  Google Scholar 

  18. Wang R, Koretz R, Yee H (2003) Is weight reduction an effective therapy for nonalcoholic fatty liver? A systematic review. Am J Med 115:554–559

    Article  PubMed  Google Scholar 

  19. Enriquez A, Leclercq I, Farrell GC, Robertson G (1999) Altered expression of hepatic CYP2E1 and CYP4A in obese, diabetic ob/ob mice, and fa/fa Zucker rats. Biochem Biophys Res Commun 255:300–306

    Article  PubMed  CAS  Google Scholar 

  20. Weltman MD, Farrell GC, Hall P, lngelman-Sundberg M, Liddle C (1998) Hepatic cytochrome P4502E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 27:128–133

    Article  PubMed  CAS  Google Scholar 

  21. Emery MG, Fisher JM, Chien JY, Kharasch ED, Dellinger EP, Kowdley KV, Thummel KE (2003) CYP2E1 activity before and after weight loss in morbidly obese subjects with nonalcoholic fatty liver disease. Hepatology 38:428–435

    Article  PubMed  CAS  Google Scholar 

  22. Raucy JL, Lasker JM, Kramer JC, Salazar DE, Lieber CS, Corcoran GB (1991) Induction of P45OIIE1 in the obese rat. Mol Pharmacol 39:275–280

    PubMed  CAS  Google Scholar 

  23. Irizar A, Barnett CR, Flatt PR, Ioannides C (1995) Defective expression of cytochrome P450 proteins in the liver of the genetically obese Zucker rats. Eur J Pharmacol 293:385–393

    Article  PubMed  CAS  Google Scholar 

  24. Weltman MD, Farrell GC, Liddle C (1996) Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111:1645–1653

    Article  PubMed  CAS  Google Scholar 

  25. Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, Ponomarenko A, DeCarli LM (2004) Model of nonalcoholic steatohepatitis. Am J Clin Nutr 79:502–509

    PubMed  CAS  Google Scholar 

  26. Lieber CS, Leo MA, Mak KM, Xu Y, Cao Q, Ren C, Ponomarenko A, DeCarli LM (2004) Acarbose attenuates experimental non-alcoholic steatohepatitis. Biochem Biophys Res Commun 315:699–703

    Article  PubMed  CAS  Google Scholar 

  27. Farrell GC (2005) Animal models of steatohepatitis. In: Farrell GC, George J, Hall P, McCullough AJ (eds) Fatty liver disease; NASH and related disorders. Blackwell Publishing, Malden, MA, USA, pp 91

    Google Scholar 

  28. Seki S, Kitada T, Sakaguchi H, Nakatani K, Wakasa K (2002) In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver disease. J Hepatol 37:56–62

    Article  PubMed  CAS  Google Scholar 

  29. Garcia-Monzon C, Martin-Perez E, Lo Iacono O, Fernandez-Bermejo M, Majano PL et al (2000) Characterization of pathogenic and prognostic factors of nonalcoholic steatohepatitis associated with obesity. J Hepatol 33:716–724

    Article  PubMed  CAS  Google Scholar 

  30. Rashid A, Wu T-C, Huang CC, Chen CH, Lin HZ et al (1999) Mitochondrial proteins that regulate apoptosis and necrosis are induced in mouse fatty liver. Hepatology 29:1131–1138

    Article  PubMed  CAS  Google Scholar 

  31. Feldstein AE, Canby A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ (2003) Hepatocyte apoptosis and FAS expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 125:437–443

    Article  PubMed  Google Scholar 

  32. Feldman G, Haouzi D, Moreau A, Durang-Schneider A-M, Bringuier A, Berson A, Mansouri A, Fau D, Pessayre D (2000) Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in FAS-mediated hepatic apoptosis in mice. Hepatology 31:674–683

    Article  Google Scholar 

  33. Chen TS, Richie JP, Nagasawa HT, Lang CA (2000) Glutathione monoethyl ester protects against glutathione deficiencies due to aging and acetaminophen in mice. Mech Ageing Dev 120:127–139

    Article  PubMed  CAS  Google Scholar 

  34. Feher J, Lengyel G (2003) A new approach to drug therapy in non-alcoholic steatohepatitis (NASH). J Int Med Res 31:537–551

    PubMed  CAS  Google Scholar 

  35. Chawla RK, Watson WH, Eastin CE, Lee EY, Schmidt J, McClain CJ (1998) S-adenosylmethionine deficiency and TNF-alpha in lipopolysaccharide-induced hepatic injury. Am J Physiol 275:G125–G129

    PubMed  CAS  Google Scholar 

  36. Zhu x, Song J, Mar M, Edwards LJ, Zeisel SH (2003) Phosphatidylethanolamine N-methyltrasferase (PEMT) knock mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline. Biochemistry J370:987–993

    Google Scholar 

  37. Baker DH (1986) Utilization of isomers and analogs of amino acids and other sulfur- containing compounds. Prog Food Nutr Sci 10:133–178

    PubMed  CAS  Google Scholar 

  38. George J, Pera N, Phung N, Leclercq I, Yun Hou J, Farrell G (2003) Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. Hepatology 39:756–764

    Article  CAS  Google Scholar 

  39. Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B, St John G, Nathan C, Brot N (2002) Arch Biochem Biophys 397:172–178

    Google Scholar 

  40. Yermolaieva O, Xu R, Schinstock C, Brot N, Weissbach H, Heinemann SH, Hoshi T (2004) Methionine sulfoxide reductase A protects neuronal cells against brief hypoxia/reoxygenation. Proc Natl Acad Sci USA 101:1159–1164

    Article  PubMed  CAS  Google Scholar 

  41. Matsui H, Ikeda K, Nakajima Y, Horikawa S, Imanishi Y, Kawada N (2004) Sulfur-containing amino acids attenuate the development of liver fibrosis in rats through down-regulation of stellate cell activation. J Hepatol 40:917–925

    Article  PubMed  CAS  Google Scholar 

  42. Oz HS, McClain CJ, Nagasaw HT, Ray MB, de Villiers WSJ, Chen TS (2004) Diverse antioxidants protect against acetaminophen hepatotoxicity. J Biochem Mol Toxicol 18:361–368

    Article  PubMed  CAS  Google Scholar 

  43. Oz HS, Chen T, McClain C, de Villiers W (2005) Antioxidants a novel therapy in a murine model of colitis. J Nutr Biochem 16(5):297–304

    Article  PubMed  CAS  Google Scholar 

  44. Oz HS, Chen T, Nagasawa H (2007) Comparative efficacies of two cysteine prodrugs and a glutathione delivery agent in a colitis model. Transl Res 150:122–129

    Article  CAS  Google Scholar 

  45. Oz HS, Hee-Jeong IM, Chen TS, de Villiers WJS, McClain CJ (2006) Glutathione enhancing agents protect against steatohepatitis in a model. J Biochem Mol Toxicol 20:39–47

    Article  PubMed  CAS  Google Scholar 

  46. Lu SC (2000) S-Adenosylmethionine. Int J Biochem Cell Biol 32:391–395

    Article  PubMed  CAS  Google Scholar 

  47. McClain CJ, Prakash S Mokshagundam L, Barve S, Song Z, Hill D, Chen T (2004) Deaciuc I mechanisms of non-alcoholic steatohepatitis. Alcohol 34:67–79

    Article  PubMed  CAS  Google Scholar 

  48. Donthamsetty S, Bhave VS, Mitra MS, Latendresse JR, Mehendale HM (2007) Nonalcoholic fatty liver sensitizes rats to carbon tetrachloride hepatotoxicity. Hepatology 45(2):391–411

    Article  PubMed  CAS  Google Scholar 

  49. Miele L, Forgione A, Hernandez AP, Gabrieli ML, Vero V, Di Rocco P, Greco AV, Gasbarrini G, Gasbarrini A, Grieco A (2005) The natural history and risk factors for progression of non-alcoholic fatty liver disease and steatohepatitis. Eur Rev Med Pharmacol Sci 9:273–278

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health grant NCAM AT1490 (H.S. Oz). Marcia C. Liu provided technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helieh S. Oz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oz, H.S., Chen, T.S. & Neuman, M. Methionine Deficiency and Hepatic Injury in a Dietary Steatohepatitis Model. Dig Dis Sci 53, 767–776 (2008). https://doi.org/10.1007/s10620-007-9900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-007-9900-7

Keywords

Navigation