Skip to main content

Advertisement

Log in

CARD15 Status and Familial Predisposition for Crohn's Disease and Colonic Gene Expression

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Familial disposition and mutations in the Caspase Recruitment Domain 15 (CARD15) have been associated with an increased risk for Crohn's disease (CD). This study investigated whether these risk factors correlate with colonic gene expression profiles generated by DNA-microarray technology. Tissue specimens from descending colon were obtained during colonoscopy from 45 CD patients (18 from areas with inflammation and 27 from noninflamed areas). Gene profiling analysis was performed using the Human Genome U133 Plus 2.0 GeneChip Array. Patients were classified according to their CARD15 status. Hybridization data were analyzed with dChip software. Nine patients with either one or two CARD15 mutations had no differentially expressed genes, compared to 36 patients with wild- type CARD15. There was only one differentially expressed EST between 8 patients who had familial disposition for inflammatory bowel disease (IBD) and 36 who did not, but hierarchical cluster analysis did not show group homogeneity. We conclude that gene expression profiling of mucosal biopsies from the descending colon of patients with CD could not be correlated with CARD15 status or with familial disposition for IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12(Suppl 1):S3–S9

    Article  PubMed  Google Scholar 

  2. Ott SJ, Musfeldt M, Wenderoth DF, et al. (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693

    Article  PubMed  CAS  Google Scholar 

  3. Swidsinski A, Ladhoff A, Pernthaler A, et al. (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54

    Article  PubMed  Google Scholar 

  4. Darfeuille-Michaud A, Boudeau J, Bulois P, et al. (2004) High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127:412–421

    Article  PubMed  Google Scholar 

  5. Seksik P, Rigottier-Gois L, Gramet G, et al. (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52:237–242

    Article  PubMed  CAS  Google Scholar 

  6. Sokol H, Seksik P, Rigottier-Gois L, et al. (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12:106–111

    Article  PubMed  Google Scholar 

  7. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen SE, Nielsen OH, Vainer B, Claesson MH (2002) Inflammatory bowel disease—Do microorganisms play a role? Ugeskr Laeger 164:5947–5950

    PubMed  Google Scholar 

  9. Mathew CG, Lewis CM (2004) Genetics of inflammatory bowel disease: progress and prospects. Hum Mol Genet 13(Spec. No. 1):R161–R168

    Article  PubMed  CAS  Google Scholar 

  10. Hugot JP, Chamaillard M, Zouali H, et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603

    Article  PubMed  CAS  Google Scholar 

  11. Ogura Y, Bonen DK, Inohara N, et al. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603–606

    Article  PubMed  CAS  Google Scholar 

  12. Cuthbert AP, Fisher SA, Mirza MM, et al. (2002) The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122:867–874

    Article  PubMed  CAS  Google Scholar 

  13. Vermeire S, Wild G, Kocher K, et al. (2002) CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet 71:74–83

    Article  PubMed  CAS  Google Scholar 

  14. Hampe J, Grebe J, Nikolaus S, et al. (2002) Association of NOD2 (CARD 15) genotype with clinical course of Crohn's disease: a cohort study. Lancet 359:1661–1665

    Article  PubMed  CAS  Google Scholar 

  15. Alvarez-Lobos M, Arostegui JI, Sans M, et al. (2005) Crohn's disease patients carrying Nod2/CARD15 gene variants have an increased and early need for first surgery due to stricturing disease and higher rate of surgical recurrence. Ann Surg 242:693–700

    Article  PubMed  Google Scholar 

  16. Russell RK, Drummond HE, Nimmo EE, et al. (2005) Genotype-phenotype analysis in childhood-onset Crohn's disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm Bowel Dis 11:955–964

    Article  PubMed  Google Scholar 

  17. http://www.wma.net/e/policy/b3.htm

  18. Ahmad T, Armuzzi A, Bunce M, et al. (2002) The molecular classification of the clinical manifestations of Crohn's disease. Gastroenterology 122:854–866

    Article  PubMed  CAS  Google Scholar 

  19. Abreu MT, Taylor KD, Lin YC, et al. (2002) Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn's disease. Gastroenterology 123:679–688

    Article  PubMed  CAS  Google Scholar 

  20. Lesage S, Zouali H, Cezard JP, et al. (2002) CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 70:845–857

    Article  PubMed  CAS  Google Scholar 

  21. Barcelo-Batllori S, Andre M, Servis C, et al. (2002) Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases. Proteomics 2:551–560

    Article  PubMed  CAS  Google Scholar 

  22. Langmann T, Moehle C, Mauerer R, et al. (2004) Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 127:26–40

    Article  PubMed  CAS  Google Scholar 

  23. Li J, Moran T, Swanson E, et al. (2004) Regulation of IL-8 and IL-1beta expression in Crohn's disease associated NOD2/CARD15 mutations. Hum Mol Genet 13:1715–1725

    Article  PubMed  CAS  Google Scholar 

  24. Dooley TP, Curto EV, Reddy SP, et al. (2004) Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: screening by DNA microarrays. Inflamm Bowel Dis 10:1–14

    Article  PubMed  Google Scholar 

  25. Uthoff SM, Eichenberger MR, Lewis RK, et al. (2001) Identification of candidate genes in ulcerative colitis and Crohn's disease using cDNA array technology. Int J Oncol 19:803–810

    PubMed  CAS  Google Scholar 

  26. Lawrance IC, Fiocchi C, Chakravarti S (2001) Ulcerative colitis and Crohn's disease: distinctive gene expression profiles and novel susceptibility candidate genes. Hum Mol Genet 10:445–456

    Article  PubMed  CAS  Google Scholar 

  27. Dieckgraefe BK, Stenson WF, Korzenik JR, Swanson PE, Harrington CA (2000) Analysis of mucosal gene expression in inflammatory bowel disease by parallel oligonucleotide arrays. Physiol Genomics 4:1–11

    PubMed  CAS  Google Scholar 

  28. Zeng H, Carlson AQ, Guo Y, et al. (2003) Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol 171:3668–3674

    PubMed  CAS  Google Scholar 

  29. Fukushima K, Ogawa H, Takahashi K, et al. (2003) Non-pathogenic bacteria modulate colonic epithelial gene expression in germ-free mice. Scand J Gastroenterol 38:626–634

    Article  PubMed  CAS  Google Scholar 

  30. Ogawa H, Fukushima K, Naito H, et al. (2003) Increased expression of HIP/PAP and regenerating gene III in human inflammatory bowel disease and a murine bacterial reconstitution model. Inflamm Bowel Dis 9:162–170

    Article  PubMed  Google Scholar 

  31. Csillag C, Nielsen OH, Borup R, Nielsen FC (2005) Microarrays and Crohn's disease: collecting reliable information. Scand J Gastroenterol 40:369–377

    PubMed  Google Scholar 

  32. Glebov OK, Rodriguez LM, Nakahara K, et al. (2003) Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomarkers Prev 12:755–762

    PubMed  CAS  Google Scholar 

  33. Distler P, Holt PR (1997) Are right- and left-sided colon neoplasms distinct tumors? Dig Dis 15:302–311

    Article  PubMed  CAS  Google Scholar 

  34. Munkholm P, Langholz E, Nielsen OH, Kreiner S, Binder V (1992) Incidence and prevalence of Crohn's disease in the county of Copenhagen, 1962–87: a sixfold increase in incidence. Scand J Gastroenterol 27:609–614

    PubMed  CAS  Google Scholar 

  35. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  PubMed  CAS  Google Scholar 

  36. Gasche C, Scholmerich J, Brynskov J, et al. (2000) A simple classification of Crohn's disease: report of the Working Party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm Bowel Dis 6:8–15

    Article  PubMed  CAS  Google Scholar 

  37. Wei C, Li J, Bumgarner RE (2004) Sample size for detecting differentially expressed genes in microarray experiments. BMC Genomics 5:87

    Article  PubMed  Google Scholar 

  38. Day D, Jass J, Price A, et al. (2003) Morson and Dawson's gastrointestinal pathology. 4th ed. Blackwell Science, Oxford, UK, pp 505–507

    Google Scholar 

  39. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–537

    PubMed  CAS  Google Scholar 

  40. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36

    Article  PubMed  CAS  Google Scholar 

  41. WFDC1. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id= 605322

  42. IL1R1. http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id= 147810

  43. Bullinger L, Valk PJ (2005) Gene expression profiling in acute myeloid leukemia. J Clin Oncol 23:6296–6305

    Article  PubMed  CAS  Google Scholar 

  44. Catalano A, Iland H (2005) Molecular biology of lymphoma in the microarray era. Pathology 37:508–522

    Article  PubMed  CAS  Google Scholar 

  45. Rosenwald A, Staudt LM (2002) Clinical translation of gene expression profiling in lymphomas and leukemias. Semin Oncol 29:258–263

    Article  PubMed  Google Scholar 

  46. Morgensztern D, Lossos IS (2005) Molecular prognostic factors in diffuse large B-cell lymphoma. Curr Treat Options Oncol 6:269–277

    PubMed  Google Scholar 

  47. Valk PJM, Verhaak RGW, Beijen MA, et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628

    Article  PubMed  CAS  Google Scholar 

  48. Bullinger L, Dohner K, Bair E, et al. (2004) Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616

    Article  PubMed  CAS  Google Scholar 

  49. van’t Veer LJ, Dai H, van de Vijver MJ, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  PubMed  CAS  Google Scholar 

  50. van de Vijver MJ, He YD, van't Veer LJ, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  CAS  Google Scholar 

  51. Bleharski JR, Li H, Meinken C, et al. (2003) Use of genetic profiling in leprosy to discriminate clinical forms of the disease. Science 301:1527–1530

    Article  PubMed  CAS  Google Scholar 

  52. Mariadason JM, Arango D, Augenlicht LH (2004) Customizing chemotherapy for colon cancer: the potential of gene expression profiling. Drug Resist Updat 7:209–218

    Article  PubMed  CAS  Google Scholar 

  53. Pickard KM, Bremner AR, Gordon JN, MacDonald TT (2004) Microbial-gut interactions in health and disease. Immune responses. Best Pract Res Clin Gastroenterol 18:271–285

    Article  PubMed  CAS  Google Scholar 

  54. Sansonetti PJ (2004) War and peace at mucosal surfaces. Nat Rev Immunol 4:953–964

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Danish Research Council, the Augustinus Foundation, Aase and Ejnar Danielsen's Foundation, the Research Foundation of Greater Copenhagen, Faroe Islands, and Greenland, and the Foundation of Else & Mogens Wedell-Wedellsborg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Csillag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csillag, C., Nielsen, O.H., Borup, R. et al. CARD15 Status and Familial Predisposition for Crohn's Disease and Colonic Gene Expression. Dig Dis Sci 52, 1783–1789 (2007). https://doi.org/10.1007/s10620-006-9737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9737-5

Keywords

Navigation