Skip to main content

Advertisement

Log in

A Polymorphism of microRNA 27a Genome Region Is Associated With the Development of Gastric Mucosal Atrophy in Japanese Male Subjects

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Noncoding microRNAs regulate the expression of various mRNAs. We attempted to clarify the relationship between miR-27a genome polymorphism and chronic gastritis. The study was performed in 179 patients with no evidence of gastric malignancy. The severity of histologic chronic gastritis was classified according to the updated Sydney system. The frequency of miR-27a G allele was 34.6%. Although the frequencies of miR-27a G allele were increased in subjects with peptic ulcer or severe mucosal atrophy, no significant differences were seen. The miR-27a polymorphism showed an interaction with gender in relation to gastric mucosal atrophy (P=.090). In only male subjects, the miR-27a polymorphism was associated with the gastric mucosal atrophy (P=.039) and both atrophy and metaplasia scores in G/G group were significantly higher than those in the other groups. The miR-27a genome region polymorphism may be an important definitive factor to develop the gastric mucosal atrophy in Japanese male subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  3. Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15:563–568

    Article  PubMed  CAS  Google Scholar 

  4. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Mic-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  PubMed  CAS  Google Scholar 

  5. Johnson SM, Grosshans H, Shingara J, et al. (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  PubMed  CAS  Google Scholar 

  6. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  7. Hayashita Y, Osada H, Tatematsu Y, et al. (2005) A polycistronic microRNA cluster, miR-17-192, is overexpressioned in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  PubMed  CAS  Google Scholar 

  8. Murakami Y, Yasuda T, Saigo K, et al. (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25:2537–2545

    Article  PubMed  CAS  Google Scholar 

  9. Cummins JM, He Y, Leary RJ, et al. (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103:3687–3692

    Article  PubMed  CAS  Google Scholar 

  10. Jemal A, Tiwari RC, Murray T, et al. (2004) American Cancer Society: Cancer statistics, 2004. CA Cancer J Clin 54:8–29

    Article  PubMed  Google Scholar 

  11. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process. First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52:6735–6740

    PubMed  CAS  Google Scholar 

  12. Suerbaum S, Michetti P (2002) Helicobacter pylori infection. N Engl J Med 347:1175–1186

    Article  PubMed  CAS  Google Scholar 

  13. Covacci A, Telford JL, Del GG, Parsonnet J, Rappuoli R (1999) Helicobacter pylori virulence and genetic geography. Science 284:1328–1333

    Article  PubMed  CAS  Google Scholar 

  14. Uemura N, Okamoto S, Yamamoto S, et al. (2001) Helicobacter pylori infection and development of gastric cancer. N Engl J Med 345:784–789

    Article  PubMed  CAS  Google Scholar 

  15. Rad R, Prinz C, Neu B, et al. (2003) Synergistic effect of Helicobacter pylori virulence factors and interleukin-1 polymorphisms for the development of severe histological changes in the gastric mucosa. J Infect Dis 188:272–281

    Article  PubMed  CAS  Google Scholar 

  16. Rad R, Dossumbekova A, Neu B, et al. (2004) Cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation, and host specific colonization during Helicobacter pylori infection. Gut 53:1082–1089

    Article  PubMed  CAS  Google Scholar 

  17. Fei BY, Xia B, Deng CS, et al. (2004) Association of tumor necrosis factor genetic polymorphism with chronic atrophic gastritis and gastric adenocarcinoma in Chinese Han population. World J Gastroenterol 10:1256–1261

    PubMed  CAS  Google Scholar 

  18. Arisawa T, Tahara T, Shibata T, et al. (2006) A F240S polymorphism of protease-activated receptor 2 (PAR2) is not detected in Japanese population with gastro-esophageal symptoms. J Clin Biochem Nutr 39:98–101

    Article  CAS  Google Scholar 

  19. Tahara T, Arisawa T, Shibata T, Hirata I, Nakano H (in press) Absence of common polymorphisms of Toll like receptor 4 (TLR4): Asp299Gly, Thr399Ile in patients with gastroduodenal diseases in Japan. J Clin Biochem Nutr

  20. Iwai N, Naraba H (2005) Polymorphisms in human pre-miRNAs. Biochem Biophys Res Commun 331:1439–1444

    Article  PubMed  CAS  Google Scholar 

  21. Zeng Y, Cullen B (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9:112–123

    Article  PubMed  CAS  Google Scholar 

  22. Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis: the updated Sydney system. Am J Surg Pathol 20:1161–1181

    Article  PubMed  CAS  Google Scholar 

  23. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC (2006) Rapid alteration of microRNA levels by histone deacethylase inhibition. Cancer Res 66:1277–1281

    Article  PubMed  CAS  Google Scholar 

  24. Meng F, Henson R, Lang M, et al. (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130:2113–2129

    Article  PubMed  CAS  Google Scholar 

  25. Lim PL, Lau NC, Garrett-Engele P, et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  26. Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  27. Yanaihara N, Caplen N, Bowman E, et al. (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  28. Volinia S, Calin GA, Liu CG, et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomiyasu Arisawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arisawa, T., Tahara, T., Shibata, T. et al. A Polymorphism of microRNA 27a Genome Region Is Associated With the Development of Gastric Mucosal Atrophy in Japanese Male Subjects. Dig Dis Sci 52, 1691–1697 (2007). https://doi.org/10.1007/s10620-006-9648-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9648-5

Keywords

Navigation