Skip to main content

Advertisement

Log in

Clostridium butyricum TO-A Culture Supernatant Downregulates TLR4 in Human Colonic Epithelial Cells

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The present study was performed to examine whether probiotics affect Toll-like receptor 4 (TLR4) expression in human colonic epithelial cells. Culture supernatants or heat-killed bacteria of Bacillus mesentericus TO-A, Clostridium butyricum TO-A, and Streptococcus faecalis T-110 were applied to human colonic epithelial cells. Treatment with C. butyricum TO-A culture supernatant significantly reduced TLR4 mRNA level (×0.16), even in the presence of interferon-γ (IFN-γ; ×0.21) as compared with untreated controls. High-performance liquid chromatography analysis showed that C. butyricum TO-A supernatant contains formate, acetate, and butyrate. Interestingly, TLR4 mRNA was significantly suppressed (×0.15–×0.22) only when cells were treated with solutions containing butyrate. Electrophoretic mobility shift assay suggested that the binding affinity of PU.1 to the promoter region of the TLR4 gene was markedly inhibited when the cells were treated with butyrate. This study suggested that butyrate produced by C. butyricum TO-A downregulates TLR4 mRNA level in human colonic epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406:782–787

    Article  PubMed  CAS  Google Scholar 

  2. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  3. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  4. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  5. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  PubMed  CAS  Google Scholar 

  6. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  7. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  8. Cario E, Podolsky DK (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68:7010–7017

    Article  PubMed  CAS  Google Scholar 

  9. Ortega-Cava CF, Ishihara S, Rumi MA, Kawashima K, Ishimura N, Kazumori H, Udagawa J, Kadowaki Y, Kinoshita Y (2003) Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J Immunol 170:3977–3985

    PubMed  CAS  Google Scholar 

  10. Boone DL, Ma A (2003) Connecting the dots from Toll-like receptors to innate immune cells and inflammatory bowel disease. J Clin Invest 111:1284–1286

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi M, Kweon MN, Kuwata H, Schreiber RD, Kiyono H, Takeda K, Akira S (2003) Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J Clin Invest 111:1297–1308

    Article  PubMed  CAS  Google Scholar 

  12. Fedorak RN, Madsen KL (2004) Probiotics and the management of inflammatory bowel disease. Inflamm Bowel Dis 10:286–299

    Article  PubMed  Google Scholar 

  13. Goossens D, Jonkers D, Stobberingh E, van den Bogaard A, Russel M, Stockbrugger R (2003) Probiotics in gastroenterology: indications and future perspectives. Scand J Gastroenterol Suppl:15–23

    Google Scholar 

  14. Kruis W (2004) Review article: antibiotics and probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 20(Suppl 4):75–78

    Article  PubMed  CAS  Google Scholar 

  15. Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633

    Article  PubMed  Google Scholar 

  16. Shanahan F (2005) Physiological basis for novel drug therapies used to treat the inflammatory bowel diseases I. Pathophysiological basis and prospects for probiotic therapy in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 288:G417–421

    Article  PubMed  CAS  Google Scholar 

  17. Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT (1999) Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 354:635–639

    Article  PubMed  CAS  Google Scholar 

  18. Gionchetti P, Rizzello F, Helwig U, Venturi A, Lammers KM, Brigidi P, Vitali B, Poggioli G, Miglioli M, Campieri M (2003) Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology 124:1202–1209

    Article  PubMed  Google Scholar 

  19. Gionchetti P, Rizzello F, Venturi A, Brigidi P, Matteuzzi D, Bazzocchi G, Poggioli G, Miglioli M, Campieri M (2000) Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology 119:305–309

    Article  PubMed  CAS  Google Scholar 

  20. Guslandi M, Giollo P, Testoni PA (2003) A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol 15:697–698

    Article  PubMed  Google Scholar 

  21. Fedorak RN, Madsen KL (2004) Probiotics and prebiotics in gastrointestinal disorders. Curr Opin Gastroenterol 20:146–155

    Article  PubMed  Google Scholar 

  22. Furrie E, Macfarlane S, Thomson G, Macfarlane GT (2005) Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology 115:565–574

    Article  PubMed  CAS  Google Scholar 

  23. Maaser C, Heidemann J, von Eiff C, Lugering A, Spahn TW, Binion DG, Domschke W, Lugering N, Kucharzik T (2004) Human intestinal microvascular endothelial cells express Toll-like receptor 5: a binding partner for bacterial flagellin. J Immunol 172:5056–5062

    PubMed  CAS  Google Scholar 

  24. Pedersen G, Andresen L, Matthiessen MW, Rask-Madsen J, Brynskov J (2005) Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin Exp Immunol 141:298–306

    Article  PubMed  CAS  Google Scholar 

  25. Lin M, Rikihisa Y (2003) Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71:5324–5331

    Article  PubMed  CAS  Google Scholar 

  26. Lin M, Rikihisa Y (2004) Ehrlichia chaffeensis downregulates surface Toll-like receptors 2/4, CD14 and transcription factors PU.1 and inhibits lipopolysaccharide activation of NF-kappa B, ERK 1/2 and p38 MAPK in host monocytes. Cell Microbiol 6:175–186

    Article  PubMed  CAS  Google Scholar 

  27. Abreu MT, Arnold ET, Thomas LS, Gonsky R, Zhou Y, Hu B, Arditi M (2002) TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem 277:20431–20437

    Article  PubMed  CAS  Google Scholar 

  28. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  PubMed  CAS  Google Scholar 

  29. Mita Y, Dobashi K, Endou K, Kawata T, Shimizu Y, Nakazawa T, Mori M (2002) Toll-like receptor 4 surface expression on human monocytes and B cells is modulated by IL-2 and IL-4. Immunol Lett 81:71–75

    Article  PubMed  CAS  Google Scholar 

  30. Bosisio D, Polentarutti N, Sironi M, Bernasconi S, Miyake K, Webb GR, Martin MU, Mantovani A, Muzio M (2002) Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-gamma: a molecular basis for priming and synergism with bacterial lipopolysaccharide. Blood 99:3427–3431

    Article  PubMed  CAS  Google Scholar 

  31. Wang T, Lafuse WP, Zwilling BS (2000) Regulation of toll-like receptor 2 expression by macrophages following Mycobacterium avium infection. J Immunol 165:6308–6313

    PubMed  CAS  Google Scholar 

  32. Böcker U, Yezerskyy O, Feick P, Manigold T, Panja A, Kalina U, Herweck F, Rossol S, Singer MV (2003) Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis 18:25–32

    Article  PubMed  Google Scholar 

  33. Laribee RN, Klemsz MJ (2001) Loss of PU.1 expression following inhibition of histone deacetylases. J Immunol 167:5160–5166

    PubMed  CAS  Google Scholar 

  34. Rehli M, Poltorak A, Schwarzfischer L, Krause SW, Andreesen R, Beutler B (2000) PU.1 and interferon consensus sequence-binding protein regulate the myeloid expression of the human Toll-like receptor 4 gene. J Biol Chem 275:9773–9781

    Article  PubMed  CAS  Google Scholar 

  35. Roger T, David J, Glauser MP, Calandra T (2001) MIF regulates innate immune responses through modulation of Toll-like receptor 4. Nature 414:920–924

    Article  PubMed  CAS  Google Scholar 

  36. Inan MS, Rasoulpour RJ, Yin L, Hubbard AK, Rosenberg DW, Giardina C (2000) The luminal short-chain fatty acid butyrate modulates NF-kappaB activity in a human colonic epithelial cell line. Gastroenterology 118:724–734

    Article  PubMed  CAS  Google Scholar 

  37. Luhrs H, Gerke T, Schauber J, Dusel G, Melcher R, Scheppach W, Menzel T (2001) Cytokine-activated degradation of inhibitory kappaB protein alpha is inhibited by the short-chain fatty acid butyrate. Int J Colorectal Dis 16:195–201

    Article  PubMed  CAS  Google Scholar 

  38. Segain JP, Raingeard de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottiere HM, Galmiche JP (2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut 47:397–403

    Article  PubMed  CAS  Google Scholar 

  39. Yin L, Laevsky G, Giardina C (2001) Butyrate suppression of colonocyte NF-kappa B activation and cellular proteasome activity. J Biol Chem 276:44641–44646

    Article  PubMed  CAS  Google Scholar 

  40. Luhrs H, Gerke T, Muller JG, Melcher R, Schauber J, Boxberge F, Scheppach W, Menzel T (2002) Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol 37:458–466

    Article  PubMed  CAS  Google Scholar 

  41. Scheppach W (1996) Treatment of distal ulcerative colitis with short-chain fatty acid enemas. A placebo-controlled trial. German-Austrian SCFA Study Group. Dig Dis Sci 41:2254–2259

    Article  PubMed  CAS  Google Scholar 

  42. Scheppach W, Sommer H, Kirchner T, Paganelli GM, Bartram P, Christl S, Richter F, Dusel G, Kasper H (1992) Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103:51–56

    PubMed  CAS  Google Scholar 

  43. Vernia P, Marcheggiano A, Caprilli R, Frieri G, Corrao G, Valpiani D, Di Paolo MC, Paoluzi P, Torsoli A (1995) Short-chain fatty acid topical treatment in distal ulcerative colitis. Aliment Pharmacol Ther 9:309–313

    Article  PubMed  CAS  Google Scholar 

  44. Vernia P, Monteleone G, Grandinetti G, Villotti G, Di Giulio E, Frieri G, Marcheggiano A, Pallone F, Caprilli R, Torsoli A (2000) Combined oral sodium butyrate and mesalazine treatment compared to oral mesalazine alone in ulcerative colitis: randomized, double-blind, placebo-controlled pilot study. Dig Dis Sci 45:976–981

    Article  PubMed  CAS  Google Scholar 

  45. Okamoto T, Sasaki M, Tsujikawa T, Fujiyama Y, Bamba T, Kusunoki M (2000) Preventive efficacy of butyrate enemas and oral administration of Clostridium butyricum M588 in dextran sodium sulfate-induced colitis in rats. J Gastroenterol 35:341–346

    Article  PubMed  CAS  Google Scholar 

  46. Katakura K, Lee J, Rachmilewitz D, Li G, Eckmann L, Raz E (2005) Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Invest 115:695–702

    Article  PubMed  CAS  Google Scholar 

  47. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, Akira S, Takeda K, Lee J, Takabayashi K, Raz E (2004) Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126:520–528

    Article  PubMed  CAS  Google Scholar 

  48. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Katsuno.

Additional information

Supported by a grant from Toa Pharmaceutical Co., Ltd., Tatebayashi, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isono, A., Katsuno, T., Sato, T. et al. Clostridium butyricum TO-A Culture Supernatant Downregulates TLR4 in Human Colonic Epithelial Cells. Dig Dis Sci 52, 2963–2971 (2007). https://doi.org/10.1007/s10620-006-9593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9593-3

Keywords

Navigation