Skip to main content

Advertisement

Log in

Oxidative DNA Damage and Antioxidant Activity in Patients with Inflammatory Bowel Disease

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Chronic inflammation may contribute to cancer risk through the accumulation of specific products as a result of DNA damage. Endogenous antioxidant enzymes prevent the formation of these harmful products. Oxidative DNA damage and endogenous antioxidant defense were determined in patients with inflammatory bowel disease (IBD). Plasma levels of 8-hydroxydeoxyguanosine (8-OHdG) and nitric oxide (NO) and plasma activities of glutathione peroxidase (G-Px) and superoxide dismutase (SOD) were determined in patients with IBD by ELISA and spectrophotometric assay, respectively. Plasma levels of 8-OHdG, SOD, and G-Px activity were found to be increased in the patient group compared to the control group (P < 0.02, P < 0.001, and P < 0.001, respectively), whereas NO was unchanged. 8-OHdG level was found to be weakly correlated with age, NO, and SOD. The results show increased DNA damage in patients with IBD. This may explain the increased risk of developing colon cancer in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mayer R, Wong WD, Rothenberger DA, Goldberg SM, Madoff RD (1999) Colorectal cancer in inflammatory bowel disease. A continuing problem. Dis Colon Rectum 42:343–347

    Article  PubMed  CAS  Google Scholar 

  2. Eaden J (2004) Review article:colorectal carcinoma and inflammatory bowel disease. Aliment Pharmacol Ther 20(Suppl 4):24–30

    Article  PubMed  Google Scholar 

  3. D’Odorico A, Bortolan S, Cardin R, D’Inca’D R, Martines D, Ferronato A, Sturniolo GC (2001) Reduced plasma antioxidant concentrations and increased oxidative DNA damage in inflammatory bowel disease. Scand J Gastroenterol 36:1289–1294

    Article  PubMed  CAS  Google Scholar 

  4. Ohshima H, Bartsch H (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305:253–264

    PubMed  CAS  Google Scholar 

  5. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem 267(1):166–172

    PubMed  CAS  Google Scholar 

  6. Hussain SP, Harris CC (1998) Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 58:4023–4037

    PubMed  CAS  Google Scholar 

  7. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  PubMed  CAS  Google Scholar 

  8. Loft S, Poulsan HE (1996) Cancer risk and oxidative DNA damage in man. J Mol Med 74(6):297–312

    Article  PubMed  CAS  Google Scholar 

  9. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 107–146

    Google Scholar 

  10. Rush JW, Sandiford SD (2003) Plasma glutathione peroxidase in healthy young adults: influence of gender and physical activity. Clin Biochem 36(5):345–351

    Article  PubMed  CAS  Google Scholar 

  11. Huerta JM, Gonzalez S, Fernandez S, Patterson AM, Lasheras C (2004) No evidence for oxidative stress as a mechanism of action of hyperhomocysteinemia in humans. Free Radic Res 38(11):1215–1221

    Article  PubMed  CAS  Google Scholar 

  12. Miranda A, Janssen L, Bosman CB, Van DuijinN W, Ostendorp-Van de Ruit MM, Kubben FJGM, Griffioen G, Lamers CBHW, Han J, Van Krieken JM, Van de Velde CJH, Verspaget HW (2000) Superoxide dismutases in gastric and esophageal cancer and the prognostic impact in gastric cancer. Clin Cancer Res 6(8):3183–3192

    Google Scholar 

  13. Malchow H, Ewe K, Brandes JW, Goebell H, Ehms H, Sommer H, Jesdinsky (1984) European Cooperative Crohn’s Disease Study (ECCDS). Results of drug treatment. Gastroenterology 86(2):249–266

    PubMed  CAS  Google Scholar 

  14. Best WR, Becktel JM, Singleton JW, Kern F Jr (1976) Development of a Crohn’s Disease Activity Index: National Cooperative Crohn’s Disease Study. Gastroenterology 70(3):439–444

    PubMed  CAS  Google Scholar 

  15. Rachmilewitz D (1989) Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomized trial. Br Med J 298:82–86

    Article  CAS  Google Scholar 

  16. Pilger A, Germadnik D, Riedel K, Meger-Kossien I, Scherer G, Rudiger HW (2001) Longitudinal study of urinary 8-hydroxy-2-deoxyguanosine excretion in healthy adults. Free Radic Res 35(3):273–280

    Article  PubMed  CAS  Google Scholar 

  17. Hussain SP, Amstad P, Raja K, Ambs S, Nagashima M, Bennett WP, Shields PG, Ham AJ, Swenberg JA, Marrogi AJ, Haris CC (2000) Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 60(1):3333–3337

    PubMed  CAS  Google Scholar 

  18. Schreiber S, MacDermott RP, Raedler A, Pinnau R, Bertovich MJ, Nash GS (1991) Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 101:1020–1030

    PubMed  CAS  Google Scholar 

  19. D’Odorico A, D’Inca R, Mestriner C, Di Leo V, Ferronato A, Sturniolo GC (2000) Influence of disease site and activity on peripheral neutrophil function in inflammatory bowel disease. Dig Dis Sci 45:1594–1600

    Article  PubMed  CAS  Google Scholar 

  20. Grisham MB (1994) Oxidants and free radicals in inflammatory bowel disease. Lancet 344:859–861

    Article  PubMed  CAS  Google Scholar 

  21. Lıh-Brody L, Powell SR, Collier KP, Reddy GM, Cerchia R, Kahn E, Weissman GS, Katz S, Floyd RA, McKınley MJ, Fisher SE, Mullin GE (1996) Increased oxidative stress and decrased antioxidant defenses in mucosa of inflammatory bowel disease. Dig Dis Sci 41(10):2078–2086

    Article  PubMed  Google Scholar 

  22. D’Inca R, Cardin R, Benazzato L, Angriman I, Martines D, Sturniolo GC (2004) Oxidative DNA damage in the mucosa of ulcerative colitis increases with disease duration and dysplasia. Inflamm Bowel Dis 10(1):23–27

    Article  PubMed  Google Scholar 

  23. Sanford KK, Price FM, Brodeur C, Makraner FL, Parshad R (1997) Deficient DNA repair in chronic ulcerative colitis. Cancer Detect Prev 21:540–545

    PubMed  CAS  Google Scholar 

  24. Tamir S, Tannenbaum SR (1996) The role of nitric oxide (NO) in the carcinogenic process. Biochim Biophys Acta 1288:F31–F36

    PubMed  Google Scholar 

  25. Maeda H, Akaike T (1998) Nitric oxide and oxygen radicals in infection, inflammation and cancer. Biochemistry 63:854–865

    PubMed  CAS  Google Scholar 

  26. Ambs S, Hussain SP, Marrogi AJ, Harris CC (1999) Cancer-prone oxyradical overload disease. IARC Sci Publ 150:295–302

    PubMed  CAS  Google Scholar 

  27. Ambs S, Hussain SP, Harris CC (1997) Interactive effects of nitric oxide and the p53 tumor suppressor gene in carcinogenesis and tumor progression. FASEB J 11:443–448

    PubMed  CAS  Google Scholar 

  28. Wink DA, Vodovotz Y, Lval J, Laval F, Dewhirst MW, Mitchell JB (1998) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19:711–721

    Article  PubMed  CAS  Google Scholar 

  29. Seril DN, Liao J, Yang GY, Yang CS (2003) Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 24(3):353–362

    Article  PubMed  CAS  Google Scholar 

  30. Keshavarzian A, Banan A, Farhadi A, Komanduri S, Mutlu E, Zhang Y, Fields JZ (2003) Increased in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease. Gut 52:720–728

    Article  PubMed  CAS  Google Scholar 

  31. Cross RK, Wilson KT (2003) Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis 9(3):179–189

    Article  PubMed  Google Scholar 

  32. Mulder TP, Verspaget HW, Janssens AR, de Bruin PA, Penna AS, Lamers CV (1991) Decrease in two intestinal copper-zinc containing proteins with antioxidant function in inflammatory bowel disease. Gut 32(10):1146–1150

    PubMed  CAS  Google Scholar 

  33. Verspaget HW, Pena AS (1988) Diminished neutrophil function in Crohn’s disease and ulcerative colitis identified by decreased oxidative metabolism and low superoxide dismutase content. Gut 29:223–228

    PubMed  CAS  Google Scholar 

  34. Bhaskar L, Ramakrishna BS, Balasubramanian KA (1995) Colonic mucosal antioxidant enzymes and lipid peroxide levels in normal subjects and patients with ulcerative colitis. J Gastroenterol Hepatol 10:140–143

    PubMed  CAS  Google Scholar 

  35. Durak I, Yasa MH, Bektas A, Kacmaz M, Cimen MY, Ozturk HS (2000) Mucosal antioxidant defense is not impaired in ulcerative colitis. Hepatogastroenterology 47:1015–1017

    PubMed  CAS  Google Scholar 

  36. Beno I, Staruchova M, Volkovova K (1997) Ulcerative colitis: activity of antioxidant enzymes of the colonic mucosa. Presse Med 26:1474–1477

    PubMed  CAS  Google Scholar 

  37. Hoffenberg EJ, Deutsch J, Smith S, Sokol RJ (1997) Circulating antioxidant concentrations in children with inflammatory bowel disease. Am J Clin Nutr 65(5):1482–1488

    PubMed  CAS  Google Scholar 

  38. Tuzun A, Erdil A, Inal V, Aydın A, Bager, Yesilova Z, Sayal A, Karaeren N, Dagalp K (2002) Oxidative stress and antioxidant capacity in patients with inflammatory bowel disease. Clin Biochem 35:569–572

    Article  PubMed  CAS  Google Scholar 

  39. Lopez-Alarcon C, Rocco C, Rissi E, Carrasco C, Squella JA, Nunez-Vergara L, Speisky H (2005) Reaction of 5-aminosalicylic acid with peroxyl radicals: protection and recovery by ascorbic acid and amino acids. Pharm Res 22(10):1642–1648

    Article  PubMed  CAS  Google Scholar 

  40. Fischer-Nielsen A, Loft S, Jensen KG (1993) Effect of ascorbate and 5-aminosalicylic acid on light-induced 8-hydroxydeoxyguanosine formation in V79 Chinese hamster cells. Carcinogenesis 14(11):2431–2433

    Article  PubMed  CAS  Google Scholar 

  41. Fischer-Nielsen A, Jeding IB, Loft S (1994) Radiation-induced formation of 8-hydroxy-2′-deoxyguanosine and its prevention by scavengers. Carcinogenesis 15(8):1609–1612

    Article  PubMed  CAS  Google Scholar 

  42. Cerda S, Weitzman SA (1997) Influence of oxygen radical injury on DNA methylation. Mutat Res 386:141–152

    Article  PubMed  CAS  Google Scholar 

  43. Krokan HE, Kavli B, Slupphaug P (2004) Novel aspects of macromolecular repair and relationship to human disease. Mol Med 82(5):280–297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of Istanbul University (Project number: UDP-550/17062005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yıldız Dincer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dincer, Y., Erzin, Y., Himmetoglu, S. et al. Oxidative DNA Damage and Antioxidant Activity in Patients with Inflammatory Bowel Disease. Dig Dis Sci 52, 1636–1641 (2007). https://doi.org/10.1007/s10620-006-9386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9386-8

Keywords

Navigation