Skip to main content
Log in

Reduced Severity of a Mouse Colitis Model with Angiotensin Converting Enzyme Inhibition

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Ulcerative colitis is characterized by elevated rates of epithelial cell apoptosis, and an up-regulation of pro-apoptotic cytokines including tumor necrosis factor α (TNF-α). Recently, angiotensin converting enzyme (ACE) has been shown to promote apoptosis. In addition, pharmacologic ACE inhibition (ACE-I) both prevents apoptosis and reduces TNF-α expression in vitro. We hypothesized that ACE-I, using enalaprilat, would decrease colonic epithelial cell apoptosis and reduce colitis severity in the dextran sulfate sodium (DSS)-induced colitis model in mice. We assessed the severity of colitis, and colonic epithelial cell apoptosis, after administration of DSS. Mice were given either daily ACE-I treatment or daily placebo. ACE-I treatment markedly improved clinical outcomes. In addition, ACE-I treatment significantly reduced the maximum histopathologic colitis grade. ACE-I also dramatically reduced the epithelial apoptotic rate. To investigate the mechanism by which ACE-I reduced apoptosis; we measured TNF-α, Bcl-2, and Bax expression. TNF-α mRNA was significantly lower with ACE-I treatment compared to placebo at every time point, as was the ratio of Bax to Bcl-2. We conclude that ACE-I reduces the severity of DSS-induced colitis and reduces epithelial cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hagiwara C, Tanaka M, Kudo H (2002) Increase in colorectal epithelial apoptotic cells in patients with ulcerative colitis ultimately requiring surgery. J Gastro Hepatol 17:758–764

    Article  Google Scholar 

  2. Boismenu R, Chen Y, Chou K, El-Sheikh A, Buelow R (2002) Orally administered RDP58 reduces the severity of dextran sodium sulphate induced colitis. Ann Rheum Dis 61(Suppl II):ii19–ii24

    PubMed  CAS  Google Scholar 

  3. Vetuschi A, Latella G, Sferra R, Caprilli R, Gaudio E (2002) Increased proliferation and apoptosis of colonic epithelial cells in dextran sulfate sodium-induced colitis in rats. Dig Dis Sci 47:1447–1457

    Article  PubMed  Google Scholar 

  4. Konstantinos A, Papadakis MD, Targan SR (1999) Current theories on the causes of inflammatory bowel diseases. Gastroenterol Clin North Am 28:283–296

    Article  Google Scholar 

  5. Braegger CP, Nicholls S, Murch SH, Stephens S, MacDonal TT (1992) Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 339:89–91

    Article  PubMed  CAS  Google Scholar 

  6. Murata Y, Ishiguro Y, Itoh J, Munakata A, Yoshida Y (1995) The role of proinflammatory and immunoregulatory cytokines in the pathogenesis of ulcerative colitis. J Gastroenterol 30(Suppl 8):56–60

    PubMed  Google Scholar 

  7. Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, Raedler A (1993) Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol 94:174–181

    Article  PubMed  CAS  Google Scholar 

  8. Wang R, Alam G, Zagariya A, Gidea C, Pinillos H, Lalude O, Choudhary G, Oezatalay D, Uhal BD (2000) Apoptosis of lung epithelial cells in response to TNF-α requires angiotensin II generation de novo. J Cell Physiol 185:253–259

    Article  PubMed  CAS  Google Scholar 

  9. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyerzum Buschenfeld KH, Strober W, Kollias G (1997) Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 27:1743–1750

    Article  PubMed  CAS  Google Scholar 

  10. Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205

    Article  PubMed  CAS  Google Scholar 

  11. Blandino II, Otaka M, Jin M, Komatsu K, Odashima M, Konishi N, Sato T, Kato S, Watanabe S (2001) FR167653, a potent suppressant of interleukin-1 and tumor necrosis factor-alpha production, ameliorates colonic lesions in experimentally induced acute colitis. J Gastroenterol Hepatol 16:1105–1111

    Article  PubMed  CAS  Google Scholar 

  12. Miceli R, Hubert M, Santiago G, Yao D-L, Coleman TA, Huddleston KA, Connolly K (1999) Efficacy of keratinocyte growth factor-2 in dextran sulfate sodium-induced murine colitis. J Pharmacol Exp Ther 290:464–471

    PubMed  CAS  Google Scholar 

  13. Kojouharoff G, Hans W, Obermeier F, Mannel DN, Andus T, Scholmerich J, Gross V, Falk W (1997) Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin Exp Immunol 107:353–358

    Article  PubMed  CAS  Google Scholar 

  14. Herfarth H, Brand K, Rath HC, Rogler G, Scholmerich J, Falk W (2000) Nuclear factor-kB activity and intestinal inflammation in dextran sulphate sodium (DSS)-induced colitis in mice is suppressed by gliotoxin. Clin Exp Immunol 120:59–65

    Article  PubMed  CAS  Google Scholar 

  15. Cooper HS, Murthy SNS, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69:238–249

    PubMed  CAS  Google Scholar 

  16. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98:694–702

    PubMed  CAS  Google Scholar 

  17. Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Buchler MW (2000) Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion 62:240–248

    Article  PubMed  CAS  Google Scholar 

  18. Kontoyiannis D, Boulougouris G, Manoloukos M, Armaka M, Apostolaki M, Pizarro T, Kotlyarov A, Forster I, Flavell R, Gaestel M, Tsichlis P, Cominelli F, Kollias G (2002) Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn’s-like inflammatory bowel disease. J Exp Med 196:1563–1574

    Article  PubMed  CAS  Google Scholar 

  19. Yamada T, Horiuchi M, Dzau VJ (1996) Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156–160

    Article  PubMed  CAS  Google Scholar 

  20. Li X, Zhang H, Soledad-Conrad V, Zhuang J, Uhal BD (2003) Bleomycin-induced apoptosis of alveolar epithelial cells requires angiotensin synthesis de novo. Am J Physiol Lung Cell Mol Physiol 284:L501–L507

    PubMed  CAS  Google Scholar 

  21. Chamoux E, Breault L, Lehoux J-G, Gallo-Payet N (1999) Involvement of the angiotensin II type 2 receptor in apoptosis during human fetal adrenal gland development. J Clin Endocrinol Metab 84:4722–4730

    Article  PubMed  CAS  Google Scholar 

  22. Wildhaber BE, Yang H, Haxhija EQ, Spencer AU, Teitelbaum DH (2005) Intestinal intraepithelial lymphocyte derived angiotensin converting enzyme modulates epithelial cell apoptosis. Apoptosis 10(6):1305–1315

    Article  PubMed  CAS  Google Scholar 

  23. Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM (1997) Angiotensin II induces apoptosis of human endothelial cells: protective effect of nitric oxide. Circ Res 81:970–976

    PubMed  CAS  Google Scholar 

  24. Burnier M (2001) Angiotensin II type 1 receptor blockers. Circulation 103:904–912

    PubMed  CAS  Google Scholar 

  25. Ehlers MR, Riordan JF (1989) Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry 28:5311–5318

    Article  PubMed  CAS  Google Scholar 

  26. Hirasawa K, Sato Y, Hosoda Y, Yamamoto T, Hanai H (2002) Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J Histochem Cytochem 50:275–282

    PubMed  CAS  Google Scholar 

  27. Danilov SM, Faerman AI, Printseva OY, Martynov AV, Sakharov IY, Trakht IN (1987) Immunohistochemical study of angiotensin-converting enzyme in human tissues using monoclonal antibodies. Histochemistry 87:487–490

    Article  PubMed  CAS  Google Scholar 

  28. Duggan KA, Mendelsohn FA, Levens NR (1989) Angiotensin receptors and angiotensin-I converting enzyme in rat intestine. Am J Physiol 257:G504–G510

    PubMed  CAS  Google Scholar 

  29. Sechi LA, Valentin JP, Griffin CA, Schambelan M (1993) Autoradiographic characterization of angiotensin II receptor subtypes in rat intestine. Am J Physiol 265:G21–G27

    PubMed  CAS  Google Scholar 

  30. Yu G, Liang X, Xie X, Su M, Zhao S (2001) Diverse effects of chronic treatment with losartan, fosinopril, and amlodipine on apoptosis, angiotensin II in the left ventricle of hypertensive rats. Int J Cardiol 81:123–129

    Article  PubMed  CAS  Google Scholar 

  31. Wang R, Zagariya A, Ang E, Ibarra-Sunga O, Uhal BD (1999) Fas-induced apoptosis of alveolar epithelial cells requires ANG II generation and receptor interaction. Am J Physiol Lung Cell Mol Physiol 277:L1245–L1250

    CAS  Google Scholar 

  32. Goussev A, Sharov VG, Shimoyama H, Tanimura M, Lesch M, Goldstein S, Sabbah HN (1998) Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am J Physiol Heart Circ Physiol 275:H626–H631

    CAS  Google Scholar 

  33. Wang L-X, Ideishi M, Yahiro E, Urata H, Arakawa K, Saku K (2001) Mechanism of the cardioprotective effect of inhibition of the renin-angiotensin system on ischemia/reperfusion-induced myocardial injury. Hypertens Res 24:179–187

    Article  PubMed  CAS  Google Scholar 

  34. Wang R, Zagariya A, Ibarra-Sunga O, Gidea C, Ang E, Deshmukh S, Chaudhary G, Baraboutis J, Filippatos G, Uhal BD (1999) Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 276:L885–L889

    CAS  Google Scholar 

  35. Uhal BD, Gidea C, Bargout R, Bifero A, Ibarra-Sunga O, Papp M, Flynn K, Filippatos G (1998) Captopril inhibits apoptosis in human lung epithelial cells: a potential antifibrotic mechanism. Am J Physiol Lung Cell Mol Physiol 275:L1013–L1017

    CAS  Google Scholar 

  36. Fujita N, Manabe H, Yoshida N, Matsumoto N, Ochiai J, Masui Y, Uemura M, Naito Y, Yoshikawa T (2000) Inhibition of angiotensin-converting enzyme protects endothelial cell against hypoxia/reoxygenation injury. Biofactors 11:257–266

    PubMed  CAS  Google Scholar 

  37. Shanmugam S, Corvol P, Gasc J-M (1996) Angiotensin II type 2 receptor mRNA expression in the developing cardiopulmonary system of the rat. Hypertension 28:91–97

    PubMed  CAS  Google Scholar 

  38. Nagashima H, Sakomur Y, Yoshikazu A, Uto K, Kameyama K, Ogawa M, Aomi S, Koyanagti H, Ishizuka N, Naruse M, Kawana M, Kasanuki H (2001) Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis in cystic medial degeneration associated with Marfan’s syndrome. Circulation 104(Suppl I):I282–I287

    PubMed  CAS  Google Scholar 

  39. Shenoy UV, Richards EM, Huang X-C, Sumners C (1999) Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology 140:500–509

    Article  PubMed  CAS  Google Scholar 

  40. Yamamoto K, Shioi T, Uchiyama K, Miyamoto T, Sasayama S, Matsumori A (2003) Attenuation of virus-induced myocardial injury by inhibition of the angiotensin II type 1 receptor signal and decreased nuclear factor-kappa B activation in knockout mice. J Am Coll Cardiol 42:2000–2006

    Article  PubMed  CAS  Google Scholar 

  41. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, DC (ISBN 0-309-05377-3)

  42. Viney JL (1998) Altering cytokine soups: a recipe for inflammatory bowel disease? Gut 42(5):607–608

    Article  PubMed  CAS  Google Scholar 

  43. Wildhaber BE, Yang H, Teitelbaum DH (2003) Total parenteral nutrition-induced apoptosis in mouse intestinal epithelium: modulation by keratinocyte growth factor. J Surg Res 112:144–151

    Article  PubMed  CAS  Google Scholar 

  44. Sanchez AL, Langdon CM, Akhtar M, Lu J, Richards CD, Bercik P, McKay DM (2003) Adenoviral transfer of the murine oncostatin M gene suppresses dextran-sodium sulfate-induced colitis. J Interferon Cytokine Res 23:193–201

    Article  PubMed  CAS  Google Scholar 

  45. Schindler R, Dinarello CA, Koch K-M (1995) Angiotensin-converting enzyme inhibitors suppress synthesis of tumour necrosis factor and interleukin 1 by human peripheral blood mononuclear cells. Cytokine 7:526–533

    Article  PubMed  CAS  Google Scholar 

  46. Kim S, Izumi Y, Yano M, Hamaguchi A, Miura K, Yamanaka S, Miyazaki H, Iwao H (1998) Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery. Circulation 97:1731–1737

    PubMed  CAS  Google Scholar 

  47. Haendeler J, Ishida M, Hunyady L, Berk BC (2000) The third cytoplasmic loop of the angiotensin II type 1 receptor exerts differential effects on extracellular signal-regulated kinase (ERK1/ERK2) and apoptosis via ras- and Rap1-dependent pathways. Circ Res 86:729–736

    PubMed  CAS  Google Scholar 

  48. Constantinescu CS, Goodman DBP, Ventura ES (1998) Captopril and lisinopril suppress production of interleukin-12 by human peripheral blood mononuclear cells. Immunol Lett 62:25–31

    Article  PubMed  CAS  Google Scholar 

  49. Letizia C, Picarelli A, De Ciocchis A, Di Giovambattista F, Greco M, Cerci S, Torsoli A, Scavo D (1996) Angiotensin-converting enzyme activity in stools of healthy subjects and patients with celiac disease. Dig Dis Sci 41:2268–2271

    Article  PubMed  CAS  Google Scholar 

  50. Guo G, Morrissey J, McCracken R, Tolley T, Liapis H, Klahr S (2001) Contributions of angiotensin II and tumor necrosis factor-α to the development of renal fibrosis. Am J Physiol Renal Physiol 280:F777–F785

    PubMed  CAS  Google Scholar 

  51. Horiuchi M, Yamada T, Hayashida W, Dzau VF (1997) Interferon regulatory factor-1 up-regulates angiotensin II type 2 receptor and induces apoptosis. J Biol Chem 272:11952–11958

    Article  PubMed  CAS  Google Scholar 

  52. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  53. Sandborn WJ, Hanauer SB (1999) Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm Bowel Dis 5:119–133

    Article  PubMed  CAS  Google Scholar 

  54. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  55. Suzuki J, Iwai M, Nakagami H, Wu L, Chen R, Sugaya T, Hamada M, Hiwada K, Horiuchi M (2002) Role of angiotensin II-regulated apoptosis through distinct AT1 and AT2 receptors in neointimal formation. Circulation 106:847–853

    Article  PubMed  CAS  Google Scholar 

  56. Wengrower D, Zannineli G, Pappo O, Latella G, Sestieri M, Villanova A, Faitelson Y, Pines M, Goldin E (2004) Prevention of fibrosis in experimental colitis by captopril: the role of tgf-beta1. Inflamm Bowel Dis 10(5):536–545

    Article  PubMed  Google Scholar 

  57. Inokuchi Y, Morohashi T, Kawana I, Nagashima Y, Kihara M, Umemura S (2005) Amelioration of 2,4,6-trinitrobenzene sulphonic acid induced colitis in angiotensinogen gene knockout mice. Gut 54(3):349–356

    Article  PubMed  CAS  Google Scholar 

  58. Jahovic N, Ercan F, Gedik N, Yuksel M, Sener G, Alican I (2005) The effect of angiotensin-converting enzyme inhibitors on experimental colitis in rats. Regul Pept 15;130(1–2):67–74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant 5 R29 AI44076-01. The paper was presented in part at the 38th Annual Meeting of the Association for Academic Surgery, Houston, Texas, November 11–13, 2004. The authors would like to thank Dr. John Ford for his assistance with the measurement of colonic blood flow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Teitelbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spencer, A.U., Yang, H., Haxhija, E.Q. et al. Reduced Severity of a Mouse Colitis Model with Angiotensin Converting Enzyme Inhibition. Dig Dis Sci 52, 1060–1070 (2007). https://doi.org/10.1007/s10620-006-9124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9124-2

Keywords

Navigation