Skip to main content
Log in

Lactobacillus plantarum 299v Enhances the Concentrations of Fecal Short-Chain Fatty Acids in Patients with Recurrent Clostridium difficile-Associated Diarrhea

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Our objective was to document how intake of Lactobacillus plantarum 299v affects the concentrations of fecal organic acids during and after metronidazole treatment in 19 patients with recurrent Clostridium difficile-associated diarrhea. Fecal samples were analyzed by gas-liquid chromatography. After intake of metronidazole a significant decrease in total short-chain fatty acids was seen in the placebo group (from 77.1 to 45.5 μmol/g; P=0.028) but not in the Lactobacillus group (79.8–60.4 μmol/g). In addition, a statistically significant difference between treatment groups was noted for butyrate (5.6–1.2 μmol/g in the placebo group vs. 7.6–5.6 μmol/g in the Lactobacillus group; P=0.047). At the end of the study and after cessation of placebo or Lactobacillus, the total short-chain fatty acids rose to the same levels as before antibiotic treatment in the placebo group. Both treatment groups showed a significant decrease in concentrations of succinate at the end of the study in comparison to the time when metronidazole intake was stopped (6.3–1.5 μmol/g in the placebo group versus 9.3–0.9 μmol/g in the Lactobacillus group; P=0.028). The present study of fecal samples from a clinical trial is the first to demonstrate that administration of Lactobacillus plantarum 299v reduces the negative effects of an antibiotic on colonic fermentation. The intake of this probiotic strain may thereby provide an additional benefit for patients with recurrent Clostridium difficile-associated diarrhea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fekety R, McFarland LV, Surawicz CM, Greenberg RN, Elmer GW, Mulligan ME (1997) Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double-blinded trial. Clin Infect Dis 24:324–333

    PubMed  CAS  Google Scholar 

  2. Vollaard EJ, Clasener HA (1994) Colonization resistance. Antimicrob Agents Chemother 38:409–414

    PubMed  CAS  Google Scholar 

  3. May T, Mackie RI, Fahey C, Cremin C, Garleb KA (1994) Effect of fiber source on short-chain fatty acid production and the growth and toxin production by Clostridium difficile. Scand J Gastroenterol 29:916–922

    PubMed  CAS  Google Scholar 

  4. Hogenauer C, Hammer HF, Krejs GJ, Reisinger EC (1998) Mechanisms and management of antibiotic-associated diarrhea. Clin Infect Dis 27:702–710

    PubMed  CAS  Google Scholar 

  5. Hove H, Tvede M, Mortensen PB (1996) Antibiotic-associated diarrhea, Clostridium difficile, and short-chain fatty acids. Scand J Gastroenterol 31:688–693

    PubMed  CAS  Google Scholar 

  6. Naaber P, Mikelsaar M (2004) Interactions between lactobacilli and antibiotic-associated diarrhea. Adv Appl Microbiol 54:231–260

    Article  PubMed  CAS  Google Scholar 

  7. McFarland LV, Surawicz CM, Greenberg RN, Fekety R, Elmer GW, Moyer KA, Melcher SA, Bowen KE, Cox JL, Noorani Z (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 24:1913–1918

    Article  Google Scholar 

  8. Surawicz CM, McFarland LV, Greenberg RN, Rubin M, Fekety R, Mulligan ME, Garcia RJ, Brandmarker S, Bowen K, Borjal D, Elmer GW (2000) The search for a better treatment for recurrent Clostridium difficile diasease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis 31:1012–1017

    Article  PubMed  CAS  Google Scholar 

  9. Wullt M, Johansson Hagslätt M-L, Odenholt I (2003) Lactobacillus plantarum 299v for the treatment of recurrent Clostridium difficile-associated diarrhea: a double-blind, placebo-controlled trial. Scand J Infect Dis 35:365–367

    Article  PubMed  Google Scholar 

  10. Salminen S, Ouwehand AC, Isolauri E (1998) Clinical applications of probiotic bacteria. Int Dairy J 8:563–572

    Article  Google Scholar 

  11. Sartor RB (2005) Probiotic therapy of intestinal inflammation and infection. Curr Opin Gastroenterol 21:44–50

    PubMed  Google Scholar 

  12. Ahrne S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE, Molin G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 85:88–94

    Article  PubMed  CAS  Google Scholar 

  13. Naaber P, Smidt I, Stsepetova, Brilene T, Annuk H, Mikelsaar M (2004) Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J Med Microbiol 53:551–554

    Article  PubMed  Google Scholar 

  14. Johansson ML, Molin G, Jeppsson B, Nobaek S, Ahrne S, Bengmark S (1993) Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 59:15–20

    PubMed  CAS  Google Scholar 

  15. Adlerberth I, Ahrné S, Johansson M-L, Molin G, Hanson LA, Wold AE (1996) A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29. Appl Environ Microbiol 62:2244–2251

    PubMed  CAS  Google Scholar 

  16. Mortensen FV, Moller JK, Hessov I (1999) Effects of short-chain fatty acids on in vitro bacterial growth of Bacteroides fragilis and Escherichia coli. APMIS 107:240–244

    Article  PubMed  CAS  Google Scholar 

  17. Rabbani GH, Albert MJ, Hamidur Rahman AS, Chowdhury AK (1999) Short-chain fatty acids improve clinical, pathologic, and microbiologic features of experimental shigellosis. J Infect Dis 179:390–397

    Article  PubMed  CAS  Google Scholar 

  18. Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798

    PubMed  CAS  Google Scholar 

  19. Scheppach W (1994) Effects of short chain fatty acids on gut morphology and function. Gut 35(Suppl):35S–8S

    Google Scholar 

  20. Mortensen PB, Clausen MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol 216 (Suppl):132S–48S

    Google Scholar 

  21. Johansson ML, Nobaek S, Berggren A, Nyman M, Bjorck I, Ahrne S, Jeppsson B, Molin G (1998) Survival of Lactobacillus plantarum DSM 9843 (299v), and effect on the short-chain fatty acid content of feces after ingestion of a rose-hip drink with fermented oats. Int J Food Microbiol 30:29–38

    Article  Google Scholar 

  22. Johansson M-L, Quednau M, Molin G, Ahrne S (1995) Randomly amplified polymorphic DNA (RAPD) for rapid typing of Lactobacillus plantarum strains. Lett Appl Microbiol 21:155–159

    PubMed  CAS  Google Scholar 

  23. Richardson AJ, Calder AG, Stewart CS (1989) Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas-chromatography. Lett Appl Microbiol 9:5–8

    CAS  Google Scholar 

  24. Berggren A (1996) Formation, pattern and physiological effects of short-chain fatty acids. Doctoral thesis. Lund Institute of Technology, Lund University, Lund, Sweden

  25. Meijer-Severs GJ, Van Santen E, Meijer BC (1990) Short-chain fatty acid and organic acid concentrations in feces of healthy human volunteers and their correlations with anaerobe cultural counts during systemic ceftriaxone administration. Scand J Gastroenterol 25:698–704

    PubMed  CAS  Google Scholar 

  26. Mellon AF, Deshpande SA, Mathers JC, Bartlett K (2000) Effect of oral antibiotics on intestinal production of propionic acid. Arch Dis Child 82:169–172

    Article  PubMed  CAS  Google Scholar 

  27. Bender A, Breves G, Stein J, Leonhard-Marek S, Schroder B, Winckler C (2001) Colonic fermentation as affected by antibiotics and acidic PH: Application of an in vitro model. Z Gastroenterol 39:911–918

    Article  PubMed  CAS  Google Scholar 

  28. Breuer RI, Buto SK, Christ ML, Bean J, Vernia P, Paoluzi P, Di Paolo MC, Caprilli R (1991) Rectal irrigation with short-chain fatty acids for distal ulcerative colitis. Preliminary report. Dig Dis Sci 36:185–187

    Article  PubMed  CAS  Google Scholar 

  29. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62:67–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the county of Skåne. Probi AB Ltd. (Sweden) provided active preparations of Lactobacillus plantarum 299v and placebo. Anna Berggren is employed at Probi AB. The other authors have no financial interest in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Wullt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wullt, M., Johansson Hagslätt, ML., Odenholt, I. et al. Lactobacillus plantarum 299v Enhances the Concentrations of Fecal Short-Chain Fatty Acids in Patients with Recurrent Clostridium difficile-Associated Diarrhea. Dig Dis Sci 52, 2082–2086 (2007). https://doi.org/10.1007/s10620-006-9123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9123-3

Keywords

Navigation