Skip to main content
Log in

Mining trajectories of moving dynamic spatio-temporal regions in sensor datasets

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

When mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. These dynamic regions can be characterized by a location or set of locations that exhibit different behaviors from their neighbors and the time periods where these differences are most pronounced. Examples include locally intense areas of precipitation, anomalous sea surface temperature (SST) readings, and locally high levels of water pollution, to name a few. The focus of this paper is to find and analyze the pattern of moving dynamic spatio-temporal regions in large sensor datasets. The approach presented in this paper uses a measure of local spatial autocorrelation over time to determine how pronounced the difference in measurements taken at a spatial location is with those taken at neighboring locations. Dynamic regions are analyzed both globally, in the form of spatial locations and time periods that have the largest difference in local spatial autocorrelation, and locally, in the form of dynamic spatial locations for a particular time period or dynamic time periods for a particular spatial node. Then, moving dynamic regions are identified by determining the spatio-temporal connectivity, extent, and trajectory for groups of locally dynamic spatial locations whose position has shifted from one time period to the next. The efficacy of the approach is demonstrated on two real-world spatio-temporal datasets (a) NEXRAD precipitation and (b) SST. Promising results were found in discovering highly dynamic regions in these datasets depicting several real environmental phenomenon which are validated as actual events of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Adam N, Janeja V, Atluri V (2004) Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets. In: Proceedings of the 2004 ACM symposium on applied computing. ACM, New York, pp 576–583

  • Agarwal D, McGregor A, Phillips J, Venkatasubramanian S, Zhu Z (2006) Spatial scan statistics: approximations and performance study. In: Conference on knowledge discovery in data: proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. Citeseer, vol 20, pp 24–33

  • Aggarwal C (2005) On change diagnosis in evolving data streams. IEEE Trans Knowl Data Eng 17(5):587–600

    Article  Google Scholar 

  • Ahn J, Kim H, Lee Y (2009) Classification of changing regions using a temporal signature of local spatial association. Environ Plan B 36(5):854–864

    Article  Google Scholar 

  • Anselin L (1995) Local Indicators of Spatial Association—LISA. Geogr Anal 27(2):93–115

    Article  Google Scholar 

  • Arnaud P, Bouvier C, Cisneros L, Dominguez R (2002) Influence of rainfall spatial variability on flood prediction. Journal of Hydrology 260(1–4):216–230

    Article  Google Scholar 

  • Birant D, Kut A (2006) Spatio-temporal outlier detection in large databases. J Comput Inf Technol 14(4):291–297

    Google Scholar 

  • Breunig MM, Kriegel HP, Ng RT, Sander J (1999) Optics-of: identifying local outliers. In: Principles of data mining and knowledge discovery, pp 262–270

  • Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with Chebyshev polynomials. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data. ACM, New York, pp 599–610

  • Celik M, Shekhar S, Rogers J, Shine J, Yoo J, (2006) Mixed-drove spatio-temporal co-occurence pattern mining: A summary of results. In: ICDM’06. IEEE Sixth international conference on data mining, pp 119–128

  • Chan J, Bailey J, Leckie C (2006) Discovering and summarising regions of correlated spatio-temporal change in evolving graphs. In: Proceedings of 6th IEEE ICDM, pp 361–365

  • Chan J, Bailey J, Leckie C (2008) Discovering correlated spatio-temporal changes in evolving graphs. Knowl Inf Syst 16(1):53–96

    Article  Google Scholar 

  • Changtien L, Dechang C, Yufeng K (2003) Algorithms for spatial outlier detection. In: Proceedings of 3rd IEEE international conference on data mining. The IEEE Computer Society Press, Los Alamitos, pp 597–600

  • Cheng T, Li Z (2006) A multiscale approach for spatio-temporal outlier detection. Trans GIS 10(2):253–263

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data, vol 928, revised edn. Wiley, New York

  • Cressie N, Wikle C (2011) Statistics for spatio-temporal data, vol 465. Wiley, New York

    MATH  Google Scholar 

  • Das M, Parthasarathy S (2009) Anomaly detection and spatio-temporal analysis of global climate system. In: SensorKDD ’09: Proceedings of the third international workshop on knowledge discovery from sensor data, pp 142–150

  • Delaunay B (1934) Sur la sphere vide. Bulletin de lAcademie des Sciences de lURSS, VII Serie, Class des Sciences Mathematiques et Naturelles pp 793–800

  • Geary R (1954) The contiguity ratio and statistical mapping. Inc Stat 5(3):115–146

    Google Scholar 

  • George B, Shekhar S (2006) Time-aggregated graphs for modeling spatio-temporal networks. Lect Notes Comput Sci 4231:85

    Google Scholar 

  • George B, Kang J, Shekhar S (2009) Spatio-temporal sensor graphs (STSG): a data model for the discovery of spatio-temporal patterns. Intell Data Anal 13(3):457–475

    Google Scholar 

  • Getis A, Ord J (1996) Local spatial statistics: an overview. In: Longley P, Batty M (eds) Spatial analysis: modelling in a GIS environment. GeoInformation International, London, p 374

  • Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 330–339

  • Griffith D (1987) Spatial autocorrelation: a primer. Association of American Geographers, Washington

  • Günnemann S, Kremer H, Laufkötter C, Seidl T (2012) Tracing evolving subspace clusters in temporal climate data. Data Min Knowl Discov 24(2):387–410

    Article  MathSciNet  Google Scholar 

  • Hadjieleftheriou M, Kollios G, Gunopulos D, Tsotras V (2003) On-line discovery of dense areas in spatio-temporal databases. Lecture notes in computer science. Springer, Berlin, pp 306–324

  • Haining R (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hart J, Martinez K (2006) Environmental sensor networks: a revolution in the earth system science? Earth Sci Rev 78(3–4):177–191

    Article  Google Scholar 

  • Heas P, Datcu M (2005) Modeling trajectory of dynamic clusters in image time-series for spatio-temporal reasoning. IEEE Trans Geosci Remote Sens 43(7):1635–1647

    Article  Google Scholar 

  • Huang Y, Zhang L, Zhang P (2008) A framework for mining sequential patterns from spatio-temporal event data sets. IEEE Trans Knowl Data Eng 20(4):433–448

    Article  Google Scholar 

  • Janeja V, Atluri V (2008) Random walks to identify anomalous free-form spatial scan windows. IEEE Trans Knowl Data Eng 20(10):1378–1392

    Article  Google Scholar 

  • Janeja V, Adam N, Atluri V, Vaidya J (2009) Spatial neighborhood based anomaly detection in sensor datasets. Data Min Knowl Discov 20:221–258

    Google Scholar 

  • Jin W, Jiang Y, Qian W, Tung A (2006) Mining outliers in spatial networks. Database Syst Adv Appl 3882:156–170

    Google Scholar 

  • Kitamoto A (2002) Spatio-temporal data mining for typhoon image collection. J Intell Inf Syst 19(1):25–41

    Article  Google Scholar 

  • Kohler E, Langkau K, Skutella M (2002) Time-expanded graphs for flow-dependent transit times. Algorithms—ESA 2:599–611

    MathSciNet  Google Scholar 

  • Kou Y, Lu C, Santos R (2007) Spatial outlier detection: a graph-based approach. In: 19th IEEE international conference on tools with artificial intelligence, ICTAI 2007

  • Krajewski WF, Kruger A, Smith JA, Baeck ML, Domaszczynski P, Goska R, Seo B, Cunha L, Gunyon C, Villarini G, Ntelekos A (2007) Hydro-NEXRAD: a community resource for future research on improving rainfall–rainfall estimation and hydrologic applications. AGU Fall Meeting Abstracts, San Francisco, CA

  • Kulldorff M (1997) A spatial scan statistic. Commun Stat 26(6):1481–1496

    Article  MATH  MathSciNet  Google Scholar 

  • Liebmann B, Allured D (2005) Daily precipitation grids for South America. Bull Am Meteorol Soc 86(11):1567–1570

    Article  Google Scholar 

  • Lin F, Xie K, Song G, Wu T (2009) A novel spatio-temporal clustering approach by process similarity. In: FSKD ’09 sixth international conference on fuzzy systems and knowledge discovery, vol 5, pp 150–154

  • Lu C, Chen D, Kou Y (2003) Detecting spatial outliers with multiple attributes. In: Proceedings 15th IEEE international conference on tools with artificial intelligence, pp 122–128

  • Lu C, Kou Y, Zhao J, Chen L (2007) Detecting and tracking regional outliers in meteorological data. Inf Sci 177(7):1609–1632

    Article  Google Scholar 

  • Lundquist JD, Cayan DR, Dettinger MD (2003) Meteorology and hydrology in Yosemite National Park: a sensor network application. Inf Process Sensor Netw 2634:518–528

    Google Scholar 

  • Mari J, Ber F (2006) Temporal and spatial data mining with second-order hidden Markov models. Soft Comput 10(5):406–414

    Article  Google Scholar 

  • McGuire M, Janeja V, Gangopadhyay A (2010) Spatiotemporal neighborhood discovery for sensor data. In: Gaber M, Vatsavai R, Omitaomu O, Gama J, Chawla N, Ganguly A (eds) Knowledge discovery from sensor data. Lecture notes in computer science, vol 5840. Springer, Berlin, pp 203–225

  • McGuire M, Janeja V, Gangopadhyay A (2011) Characterizing sensor datasets with multi-granular spatio-temporal intervals. In: Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems (GIS’11). ACM, New York

  • McGuire M, Gangopadhyay A, Janeja V (2012a) Exploring multivariate spatio-temporal change in climate data using image analysis techniques. In: Proceedings of the 3rd international conference on computing for geospatial research and applications. ACM, New York, p 13

  • McGuire M, Janeja V, Gangopadhyay A (2012b) Dynamic spatio-temporal regions source code. Online. http://pages.towson.edu/mmcguire/research/code/DSTR/DSTR.zip

  • Mehta S, Parthasarathy S, Machiraju R (2006) On trajectory representation for scientific features. In: IEEE Sixth international conference on data mining, ICDM’06, pp 997–1001

  • Monreale A, Pinelli F, Trasarti R, Giannotti F (2009) Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 637–646

  • Moran P (1948) The interpretation of statistical maps. J R Stat Soc B 10(243):51

    Google Scholar 

  • NOAA (2000) Tropical atmosphere ocean project. http://www.pmel.noaa.gov/tao/jsdisplay/, http://www.pmel.noaa.gov/tao/jsdisplay/

  • Okabe A, Boots B, Sugihara K, Chiu S (2000) Spatial tessellations: concepts and applications of Voronoi diagrams. Wiley, New York

    Book  Google Scholar 

  • Oliveira M, Gama J (2010) Bipartite graphs for monitoring clusters transitions. Adv Intell Data Anal IX:114–124

    Google Scholar 

  • Reljin I, Reljin DB, Jovanović G (2003) Clustering and mapping spatial-temporal datasets using SOM neural networks. J Autom Control 13(1):55–60

    Article  Google Scholar 

  • Rosswog K J Ghose (2008) Detecting and tracking spatio-temporal clusters with adaptive history filtering. In: IEEE international conference on data mining workshops, 2008 ICDMW ’08, pp 448–457

  • Sap MNM (2005) Finding spatio-temporal patterns in climate data using clustering. In: International conference on Cyberworlds, pp 8–164. doi:10.1109/CW.2005.45

  • Shekhar S, Lu CT, Zhang P (2001) Detecting graph-based spatial outliers: algorithms and applications (a summary of results). In: KDD ’01: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 371–376. doi:10.1145/502512.502567

  • Shekhar S, Lu C, Zhang P (2003) A unified approach to detecting spatial outliers. GeoInformatica 7(2):139–166

    Article  Google Scholar 

  • Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: modeling and monitoring cluster transitions. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 706–711

  • Steinhaeuser K, Ganguly A, Chawla N (2012) Multivariate and multiscale dependence in the global climate system revealed through complex networks. Clim Dyn 1–7. doi:10.1007/s00382-011-1135-9

  • Sun P, Chawla S (2004) On local spatial outliers. In: ICDM ’04 fourth IEEE international conference on data mining, pp 209–216. doi:10.1109/ICDM.2004.10097

  • Tan P, Steinbach M, Kumar V, Potter C, Klooster S, Torregrosa A (2001) Finding spatio-temporal patterns in earth science data. In: Proceedings of KDD workshop on temporal data mining

  • Tarjan R (1971) Depth-first search and linear graph algorithms. In: 12th annual symposium on switching and automata theory, pp 114–121

  • Tietbohl A, Bogorny V, Kuijpers B, Alvares L (2008) A clustering-based approach for discovering interesting places in trajectories. In: Proceedings of the ACM symposium on applied computing, advances in spatial and image-based, information systems, pp 863–868

  • Tobler W (1970) A computer model simulation of urban growth in the detroit region. Econ Geogr 46(2):234–240

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Nino. Bull Am Meteorol Soci 78(12):2771–2777

    Article  Google Scholar 

  • Worboys M, Duckham M (2006) Monitoring qualitative spatiotemporal change for geosensor networks. Int J Geogr Inf Sci 20(10):1087–1108

    Article  Google Scholar 

  • Wu E, Liu W, Chawla S (2010) Spatio-temporal outlier detection in precipitation data. Knowl Discov Sensor Data 5840:115–133

    Google Scholar 

  • Yang H, Parthasarathy S, Mehta S (2005) A generalized framework for mining spatio-temporal patterns in scientific data. In: Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining. ACM, New York, pp 716–721

Download references

Acknowledgments

This work has been funded in part by the United States National Oceanic and Atmospheric Administration Grants NA06OAR4310243, NA07OAR4170518, and NA10OAR310220. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration or the Department of Commerce.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. McGuire.

Additional information

Responsible editor: Srinivasan Parthasarathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGuire, M.P., Janeja, V.P. & Gangopadhyay, A. Mining trajectories of moving dynamic spatio-temporal regions in sensor datasets. Data Min Knowl Disc 28, 961–1003 (2014). https://doi.org/10.1007/s10618-013-0324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-013-0324-z

Keywords

Navigation