Skip to main content
Log in

Learning in parallel universes

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

We discuss Learning in parallel universes as a learning concept that encompasses the simultaneous analysis from multiple descriptor spaces. In contrast to existing approaches, this approach constructs a global model that is based on only partially applicable, local models in each descriptor space. We present some application scenarios and compare this learning strategy to other approaches on learning in multiple descriptor spaces. As a representative for learning in parallel universes we introduce different extensions to a family of unsupervised fuzzy clustering algorithms and evaluate their performance on an artificial data set and a benchmark of 3D objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 3D Benchmark (2008) Konstanz 3D model search engine. http://merkur01.inf.uni-konstanz.de/CCCC/. Accessed 20 March 2009

  • Aggarwal CC, Yu PS (2000) Finding generalized projected clusters in high dimensional spaces. In: Chen W, Naughton JF, Bernstein PA (eds) Proceedings of the 2000 ACM SIGMOD international conference on management of data, May 16–18, 2000, Dallas, Texas, USA, ACM, pp 70–81

  • Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the 1998 ACM SIGMOD international conference on management of data, ACM Press, New York, NY, USA, pp 94–105

  • Aggarwal CC, Wolf JL, Yu PS, Procopiuc C, Park JS (1999) Fast algorithms for projected clustering. In: Proceedings of ACM SIGMOD international conference on management of data, pp 61–72

  • Alqadah F, Bhatnagar R (2008) An effective algorithm for mining 3-clusters in vertically partitioned data. In: CIKM ’08: proceeding of the 17th ACM conference on information and knowledge management, ACM, New York, NY, USA, pp 1103–1112. http://doi.acm.org/10.1145/1458082.1458228

  • Bender A, Glen RC (2004) Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2(22): 3204–3218

    Article  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    MATH  Google Scholar 

  • Bickel S, Scheffer T (2004) Multi-view clustering. In: Proceedings of the fourth IEEE international conference on data mining (ICDM’04), pp 19–26

  • Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on computational learning theory (COLT’98), ACM Press, pp 92–100

  • Bustos B, Keim DA, Saupe D, Schreck T, Vranic DV (2004) Using entropy impurity for improved 3D object similarity search. In: Proceedings of IEEE international conference on multimedia and expo (ICME’2004), pp 1303–1306

  • Bustos B, Keim DA, Saupe D, Schreck T, Vranić DV (2005) Feature-based similarity search in 3D object databases. ACM Comput Surv (CSUR) 37(4): 345–387

    Article  Google Scholar 

  • Bustos B, Keim DA, Saupe D, Schreck T, Vranić DV (2006) An experimental effectiveness comparison of methods for 3D similarity search. Special issue on multimedia contents and management in digital libraries. Int J Digit Libr 6(1): 39–54

    Article  Google Scholar 

  • Dasgupta S, Littman ML, McAllester DA (2001) PAC generalization bounds for co-training. In: NIPS, pp 375–382

  • Friedman JH, Meulmany JJ (2004) Clustering objects on subsets of attributes. J R Stat Soc 66(4): 815–849

    Article  MATH  MathSciNet  Google Scholar 

  • Kailing K, Kriegel HP, Pryakhin A, Schubert M (2004) Clustering multi-represented objects with noise. In: PAKDD, pp 394–403

  • Klawonn F (2004) Fuzzy clustering: insights and a new approach. Mathware Soft Comput 11: 125–142

    MATH  MathSciNet  Google Scholar 

  • Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data (TKDD) 3(1): 1–58

    Article  Google Scholar 

  • Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2): 98–110

    Article  Google Scholar 

  • Krishnapuram R, Keller JM (1996) The possibilistic c-means algorithm: insights and recommendations. IEEE Trans Fuzzy Syst 4: 385–393

    Article  Google Scholar 

  • Patterson DE, Berthold MR (2001) Clustering in parallel universes. In: IEEE conference on systems, man and cybernetics, IEEE Press

  • Rüping S, Scheffer T (eds) (2005) Proceedings of the ICML 2005 workshop on learning with multiple views. http://www-ai.cs.uni-dortmund.de/MULTIVIEW2005/MultipleViews.pdf. Accessed 7 March 2010

  • Wiswedel B, Berthold MR (2007) Fuzzy clustering in parallel universes. Int J Approx Reason 45(3): 439–454

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Wiswedel.

Additional information

Responsible editor: Johannes Fürnkranz and Arno Knobbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiswedel, B., Höppner, F. & Berthold, M.R. Learning in parallel universes. Data Min Knowl Disc 21, 130–152 (2010). https://doi.org/10.1007/s10618-010-0170-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-010-0170-1

Keywords

Navigation