Skip to main content
Log in

Interval-based projection method for under-constrained numerical systems

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

This paper presents an interval-based method that follows the branch-and-prune scheme to compute a verified paving of a projection of the solution set of an under-constrained system. Benefits of this algorithm include anytime solving process, homogeneous verification of inner boxes, and applicability to generic problems, allowing any number of (possibly nonlinear) equality and inequality constraints. We present three key improvements of the algorithm dedicated to projection problems: (i) The verification process is enhanced in order to prove faster larger boxes in the projection space. (ii) Computational effort is saved by pruning redundant portions of the solution set that would project identically. (iii) A dedicated branching strategy allows reducing the number of treated boxes. Experimental results indicate that various applications can be modeled as projection problems and can be solved efficiently by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araya, I., Trombettoni, G., Neveu, B. (2010). Exploiting monotonicity in interval constraint propagation. In Proc. of AAAI’10.

  2. Beltran, M., Castillo, G., Kreinovich, V. (1998). Algorithms that still produce a solution (maybe not optimal) even when interrupted: Shary’s idea justified. Reliable Computing, 4(1), 39–53.

    Article  MathSciNet  MATH  Google Scholar 

  3. Benhamou, F., McAllester, D., Van Hentenryck, P. (1994). CLP(intervals) revisited. In Proc. of Intl. Symp. on Logic Prog (pp. 124–138). The MIT Press.

  4. Collins, G.E. (1998). Quantifier elimination by cylindrical algebraic decomposition—twenty years of progress. Quantifier Elimination and Cylindrical Algebraic Decomposition (pp. 8–23).

  5. Goldsztejn, A. (2006). A branch and prune algorithm for the approximation of non-linear ae-solution sets. In Proc. of ACM SAC 2006 (pp. 1650–1654).

  6. Goldsztejn, A., & Jaulin, L. (2006). Inner and outer approximations of existentially quantified equality constraints. In Proc. of CP’06, LNCS4204 (pp. 198–212).

  7. Goldsztejn, A., & Jaulin, L. (2010). Inner approximation of the range of vector-valued functions. Reliable Computing, 14, 1–23.

    MathSciNet  Google Scholar 

  8. Goualard, F. (2008). Gaol: NOT just another interval library (version 3.1.1). http://sourceforge.net/projects/gaol/. Accessed 3 Aug 2012

  9. Granvilliers, L. (2010). Realpaver (version 1.1). http://pagesperso.lina.univ-nantes.fr/~granvilliers-l/realpaver/. Accessed 3 Aug 2012

  10. Hansen, E., & Sengupta, S. (1981) Bounding solutions of systems of equations using interval analysis. BIT, 21, 203–211.

    Article  MathSciNet  MATH  Google Scholar 

  11. Herrero, P., Jaulin, L., Vehi, J., Sainz, M. (2010). Guaranteed set-point computation with application to the control of a sailboat. International Journal of Control, Automation and Systems, 8(1), 1–7.

    Article  Google Scholar 

  12. Herrero, P., Sainz, M.A., Veh, J., Jaulin, L. (2005). Quantified set inversion algorithm with applications to control. Reliable Computing, 11(5), 369–382.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaulin, L., Kieffer, M., Didrit, O., Walter, E. (2001). Applied interval analysis, with examples in parameter and state estimation, robust control and robotics. Springer.

  14. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., Van Hentenryck, P. (2005) Standardized notation in interval analysis. In Proc. of XIII Baikal International School-seminar “Optimization methods and their applications” (pp. 106–113).

  15. Kearfott, R.B., & Novoa III, M. (1990). Algorithm 681: intbis, a portable interval newton/bisection package. ACM Transactions on Mathematical Software, 16(2), 152–157.

    Article  MATH  Google Scholar 

  16. Khalil, H.K. (2002). Nonlinear systems, (3rd edn). Prentice Hall.

  17. Lhomme, O. (1993). Consistency techniques for numeric CSPs. In Proc. of the 13th International Joint Conference on Artificial Intelligence (IJCAI’93) (pp. 232–238).

  18. Moore, R. (1966). Interval analysis. Prentice-Hall.

  19. Neumaier, A. (1988). The enclosure of solutions of parameter-dependent systems of equations. In R. Moore (Ed.), Reliability in Computing (pp. 269–286). San Diego: Academic Press.

    Google Scholar 

  20. Neumaier, A. (1990). Interval methods for systems of equations. Cambridge University Press.

  21. Ratschan, S. (2000). Uncertainty propagation in heterogeneous algebras for approximate quantified constraint solving. Journal of Universal Computer Science 6(9), 861–880.

    MathSciNet  MATH  Google Scholar 

  22. Reboulet, C. (1988). Modélisation des robots parallèles. In J.D. Boissonat, B. Faverjon, J.P. Merlet (Eds.), Techniques de la robotique, architecture et commande (pp. 257–284). Paris, France: Hermes sciences.

    Google Scholar 

  23. Rossi, F., van Beek, P., Walsh, T. (2006). Handbook of constraint programming (Foundations of Artificial Intelligence). New York, NY, USA: Elsevier Science Inc.

    Google Scholar 

  24. Shary, S.P. (2002) A new technique in systems analysis under interval uncertainty and ambiguity. Reliable Computing 8(5), 321–418.

    Article  MathSciNet  MATH  Google Scholar 

  25. Van Hentenryck, P., Michel, L., Deville, Y. (1997). Numerica: A modeling language for global optimization. MIT Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, D., Goldsztejn, A. & Jermann, C. Interval-based projection method for under-constrained numerical systems. Constraints 17, 432–460 (2012). https://doi.org/10.1007/s10601-012-9126-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-012-9126-y

Keywords

Navigation