Skip to main content
Log in

Formal languages for integer programming modeling of shift scheduling problems

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

This paper approaches the problem of modeling optimization problems containing substructures involving constraints on sequences of decision variables. Such constraints can be very complex to express with Mixed Integer Programming (MIP). We suggest an approach inspired by global constraints used in Constraint Programming (CP) to exploit formal languages for the modeling of such substructures with MIP. More precisely, we first suggest a way to use automata, as the CP regular constraint does, to express allowed patterns for the values taken by the constrained sequence of variables. Secondly, we present how context-free grammars can contribute to formulate constraints on sequences of variables in a MIP model. Experimental results on both approaches show that they facilitate the modeling, but also give models easier to solve by MIP solvers compared to compact assignment MIP formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  2. Aykin, T. (1996). Optimal shift scheduling with multiple break windows. Management Science, 42(4), 591–602.

    Article  MATH  Google Scholar 

  3. Aykin, T. (1998). A composite branch and cut algorithm for optimal shift scheduling with multiple breaks and break windows. Journal of the Operational Research Society, 49(6), 603–615.

    MATH  Google Scholar 

  4. Balakrishan, A., & Wong, R. (1990). Model for the rotating workforce scheduling problem. Networks, 20, 25–42.

    Article  MathSciNet  Google Scholar 

  5. Beaulieu, H., Ferland, J. A., Gendron, B., & Michelon, P. (2000). A mathematical programming approach for scheduling physicians in the emergency room. Health Care Management Science, 3, 193–200.

    Article  Google Scholar 

  6. Bechtold, S., & Jacobs, L. (1990). Implicit modeling of flexible break assignment in optimal shift scheduling. Management Science, 36(11), 1339–1351.

    Article  Google Scholar 

  7. Bechtold, S., & Jacobs, L. (1996). The equivalence of general set-covering and implicit integer programming formulations for shift scheduling. Naval Research Logistics, 43(2), 233–249.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bouchard, M. (2004). Optimisation des pauses dans le problème de fabrication des horaires avec quarts de travail. Memoire de maitrise, Ecole Polytechnique de Montreal.

  9. Çezik, T., Günlük, O., & Luss, H. (1999). An integer programming model for the weekly tour scheduling problem. Naval Research Logistic, 48(7).

  10. Cocke, J., & Schwartz, J. T. (1970). Programming languages and their compilers: Preliminary notes. Technical report, Courant Institute of Mathematical Sciences, New York University.

  11. Dantzig, G. (1954). A comment on Edie’s traffic delay at toll booths. Operations Research, 2, 339–341.

    Article  MathSciNet  Google Scholar 

  12. Demassey, S., Pesant, G., & Rousseau, L.-M. (2005). Constraint programming based column generation for employee timetabling. In Proceedings of the second international conference on intergretion of AI and OR techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2005) (Vol. 3524, pp. 140–154).

  13. Demassey, S., Pesant, G., & Rousseau, L.-M. (2006). A cost-regular based hybrid column generation approach. Constraints, 11(4), 315–333.

    Article  MATH  MathSciNet  Google Scholar 

  14. Ernst, A., Hourigan, P., Krishnamoorthy, M., Mills, G., Nott, H., & Sier, D. (1999). Rostering ambulance officers. In Proceedings of the fifteenth national conference of the Australian society for operations research, Gold Coast (pp. 470–481).

  15. Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. (2004). An annotated bibliography of personnel scheduling and rostering. Annals of Operations Research, 127, 21–144.

    Article  MATH  MathSciNet  Google Scholar 

  16. Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153, 3–27.

    Article  MATH  MathSciNet  Google Scholar 

  17. Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to automata theory, languages and computation. Reading: Addison Wesley.

    MATH  Google Scholar 

  18. Kadioglu, S., & Sellmann, M. (2008). Efficient context-free grammar constraints. In Proceedings of the 23rd national conference on artificial intelligence (pp. 310–316).

  19. Kasami, T. (1965). An efficient recognition and syntax-analysis algorithm for context-free languages. Technical Report, Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, MA.

  20. Laporte, G., Nobert, Y., & Biron, J. (1980). Rotating schedules. European Journal of Operational Research, 4(1), 24–30.

    Article  Google Scholar 

  21. Mehrotra, A., Murthy, K., & Trick, M. (2000). Optimal shift scheduling: A branch-and-price approach. Naval Research Logistics, 47, 185–200.

    Article  MATH  MathSciNet  Google Scholar 

  22. Menana, J., & Demassey, S. (2009). Sequencing and counting with the multicost-regular constraint. In CPAIOR (pp. 178–192).

  23. Millar, H., & Kiragu, M. (1998). Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming. European Journal of Operational Research, 104(3), 582–592.

    Article  MATH  Google Scholar 

  24. Moondra, S. (1976). A linear programming model for work force scheduling for banks. Journal of Bank Research, 6, 299–301.

    Google Scholar 

  25. Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In Proceedings of the tenth international conference on principles and practice of Constraint Programming (CP 2004) (pp. 482–495).

  26. Quimper, C.-G., & Rousseau, L.-M. A large neighborhood search approach to the multi-activity shift scheduling problem. Journal of Heuristics. doi:10.1007/s10732-009-9106-6.

  27. Quimper, C.-G., & Walsh, T. (2006). Global grammar constraints. In Proceedings of the twelfth international conference on principles and practice of Constraint Programming (CP 2006) (pp. 751–755).

  28. Quimper, C.-G., & Walsh, T. (2007). Decomposing global grammar constraints. In Proceedings of the thirteenth international conference on principles and practice of Constraint Programming (CP 2007) (pp. 590–604).

  29. Rekik, M. (2006). Construction d’horaires de travail dans des environnements hautement flexibles. PhD thesis, École Polytechnique de Montréal.

  30. Rekik, M., Cordeau, J.-F., & Soumis, F. (2004). Using benders decomposition to implicitly model tour scheduling. Annals of Operations Research, 118, 111–133.

    Article  MathSciNet  Google Scholar 

  31. Sellmann, M. (2007). The theory of grammar constraints. In Proceedings of the twelfth international conference on principles and practice of Constraint Programming (CP 2006) (pp. 530–544).

  32. Sodhi, M. S. (2003). A flexible, fast, and optimal modeling approach applied to crew rostering at London Underground. Annals of Operations Research, 127, 259–281.

    Article  Google Scholar 

  33. Thompson, G. (1995). Improved implicit optimal modelling of the labor shift scheduling problem. Management Science, 41(4), 595–607.

    Article  MATH  Google Scholar 

  34. Younger, D. H. (1967). Recognition and parsing of context-free languages in time n 3. Information and Control, 10(2), 189–208.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Côté.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Côté, MC., Gendron, B., Quimper, CG. et al. Formal languages for integer programming modeling of shift scheduling problems. Constraints 16, 54–76 (2011). https://doi.org/10.1007/s10601-009-9083-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-009-9083-2

Keywords

Navigation