Skip to main content
Log in

Lexicographically-ordered constraint satisfaction problems

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

We describe a simple CSP formalism for handling multi-attribute preference problems with hard constraints, one that combines hard constraints and preferences so the two are easily distinguished conceptually and for purposes of problem solving. Preferences are represented as a lexicographic order over complete assignments based on variable importance and rankings of values in each domain. Feasibility constraints are treated in the usual manner. Since the preference representation is ordinal in character, these problems can be solved with algorithms that do not require evaluations to be represented explicitly. This includes ordinary CSP algorithms, although these cannot stop searching until all solutions have been checked, with the important exception of heuristics that follow the preference order (lexical variable and value ordering). We describe relations between lexicographic CSPs and more general soft constraint formalisms and show how a full lexicographic ordering can be expressed in the latter. We discuss relations with (T)CP-nets, highlighting the advantages of the present formulation, and we discuss the use of lexicographic ordering in multiobjective optimisation. We also consider strengths and limitations of this form of representation with respect to expressiveness and usability. We then show how the simple structure of lexicographic CSPs can support specialised algorithms: a branch and bound algorithm with an implicit cost function, and an iterative algorithm that obtains optimal values for successive variables in the importance ordering, both of which can be combined with appropriate variable ordering heuristics to improve performance. We show experimentally that with these procedures a variety of problems can be solved efficiently, including some for which the basic lexically ordered search is infeasible in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrow, K. J., & Raynaud, H. (1986). Social choice and multicriterion decision-making. MIT.

  2. Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint solving and optimization. Journal on ACM, 44, 201–236.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., & Fargier, H. (1999). Semiring-based CSPs and valued CSPs: Frameworks, properties and comparison. Constraints, 4, 199–240.

    Article  MATH  MathSciNet  Google Scholar 

  4. Borcherding, K., Eppel, T., & von Winterfeldt, D. (1991). Comparison of weighting judgments in multiattribute utility measurement. Management Science, 37, 1603–1619.

    Article  MATH  Google Scholar 

  5. Borning, A., Freeman-Benson, B., & Wilson, M. (1992) Constraint hierarchies. LISP and Symbolic Computation, 5, 223–270.

    Article  Google Scholar 

  6. Boutilier, C., Brafman, R. I., Hoos, H. H., & Poole, D. (1999). Reasoning with conditional ceteris paribus preference statements. In Proc. fifteenth annual conference on uncertainty in artificial intelligence (pp. 71–80). Morgan Kaufmann.

  7. Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H., & Poole, D. (2004a). CP-nets: A tool for representing and reasoning with ceteris paribus preference statements. Journal of Artificial Intelligence Research, 21, 135–191.

    MATH  MathSciNet  Google Scholar 

  8. Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H., & Poole, D. (2004b). Preference-based constrained optimization with CP-nets. Computational Intelligence, Special Issue on Preferences, 20, 137–157.

    MathSciNet  Google Scholar 

  9. Brafman, R. I., & Domshlak, C. (2002). Introducing variable importance tradeoffs into CP-nets. In Proc. eighteenth annual conference on uncertainty in artificial intelligence (pp. 69–76). AAAI Press.

  10. Brafman, R. I., Domshlak, C., & Shimony, E. (2006). Graphical modeling of preference and importance. Journal of Artificial Intelligence Research, 25, 389–424.

    MATH  MathSciNet  Google Scholar 

  11. Brewka, G. (1989). Preferred subtheories: An extended logical framework for default reasoning. In Proc. eleventh international joint conference on artificial intelligence (pp. 1043–1048). Morgan Kaufmann.

  12. Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making. Dover.

  13. Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems are. In Proc. twelth international joint conference on artificial intelligence (pp. 331–337). Morgan Kaufmann.

  14. Domshlak, C., & Brafman, R. I. (2002). CP-nets - reasoning and consistency testing. In Proc. eighth conference on principles of knowledge representation and reasoning (pp. 121–132). Morgan Kaufmann.

  15. Doyle, J., & Thomason, R. H. (1999). Background to qualitative decision theory. Artificial Intelligence Magazine, 20, 55–68.

    Google Scholar 

  16. Ehrgott, M. (2005). Multicriteria Optimization. 2nd edition. Springer.

  17. Ehrgott, M., & Wiecek, M. M. (2005). Multiobjective programming. In J. Figueira, S. Greco, & M. Ehrgott (eds.), Multiple criteria decision analysis. State of the art surveys (pp. 667–722). Springer.

  18. Fargier, H., Lang, J., & Schiex, T. (1993). Selecting preferred solutions in fuzzy constraint satisfaction problems. In Proc. first European conference on fuzzy and intelligent technologies - EUFIT’93 (pp. 1128–1134). Augustinus Buchhandlung.

  19. Fishburn, P. C. (1970). Utility theory for decision making. Wiley.

  20. Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules: A survey. Management Science, 20, 1442–1471

    Article  MATH  MathSciNet  Google Scholar 

  21. Fishburn, P. C. (1975). Axioms for lexicographic preferences. Review of Economic Studies, 42, 415–419.

    Article  MATH  Google Scholar 

  22. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2002). Global constraints for lexicographic orderings. In P. V. Hentenryck (ed.), Principles and practice of constraint programming - CP2002, LNCS (vol. 2470, pp. 93–108). Springer.

  23. Freuder, E. C., Wallace, R. J., & Heffernan, R. (2003). Ordinal constraint satisfaction. In Fifth international workshop on soft constraints - SOFT’03.

  24. Frost, D., & Dechter, R. (1995). Look-ahead value ordering for constraint satisfaction problems. In Proc. fourteenth international joint conference on artificial intelligence (pp. 572–578). Morgan Kaufmann.

  25. Gavanelli, M. (2002). An algorithm for multi-criteria optimization in CSPs. In F. van Harmelen (ed.), Fifteenth European conference on artificial intelligence-ECAI 2002 (pp. 136–140). IOS Press.

  26. Goldsmith, J., Lang, J., Truszczynski, M., & Wilson, N. (2005). The computational complexity of dominance and consistency in CP-nets. In Proc. nineteenth international joint conference on artificial intelligence (pp. 144–149).

  27. Haralick, R. M., & Elliott, G. L. (1980). Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence, 14, 263–313.

    Article  Google Scholar 

  28. Joseph, R. R., Chan, P., Hiroux, M., & Weil, G. (2007). Decision-support with preference constraints. European Journal of Operational Research, 177, 1469–1494.

    Article  MATH  MathSciNet  Google Scholar 

  29. Junker, U. (2002). Preference-based search and multi-criteria optimization. In Proc. eighteenth national conference on artificial intelligence (pp. 34–40). AAAI Press.

  30. Junker, U. (2004). Preference-based search and multi-criteria optimization. Annals of Operation Research, 130, 75–115

    Article  MATH  MathSciNet  Google Scholar 

  31. Junker, U. (2008). Preference-based problem solving for constraint programming. In F. Fages, F. Rossi, & S. Soliman (eds.), Recent advances in constraints: 12th annual ERCIM international workshop on constraint solving and constraint logic programming - CSCLP 2007. LNAI (vol. 5129, pp. 109–126). Revised selected papers. Springer.

  32. Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives. Cambridge.

  33. Korhonen, M. (2005). Interactive methods. In J. Figueira, S. Greco, & M. Ehrgott (eds.), Multiple criteria decision analysis. State of the art surveys (pp. 641–665). Springer.

  34. Larichev, O. I. (1984). Psychological validation of decision methods. Journal of Applied Systems Analysis, 11, 37–46.

    Google Scholar 

  35. Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal on Operational Research, 169, 932–942.

    Article  MATH  MathSciNet  Google Scholar 

  36. Lecoutre, C., Boussemart, F., & Hemery, F. (2004). Backjump-based techniques versus conflict-directed heuristics. In Proc. sixteenth international conference on tools with artificial intelligence-ICTAI’04 (pp. 549–557). IEEE Press.

  37. Luce, R. D., & Suppes, P. (1965). Preference, utility and subjective probability. In R. D. Luce, R. R. Bush, & E. Galanter (eds.), Handbook of mathematical psychology (vol. 3, pp. 249–410). Wiley.

  38. Majumdar, T. (1966). The measurement of utility. Macmillan.

  39. Olson, D. L., Moshkovich, H. M., Schellenberger, R., & Mechitov, A. I. (1995). Consistency and accuracy in decision aids: Experiments with four multiattribute systems. Decision Science, 26, 723–746.

    Article  Google Scholar 

  40. Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge.

  41. Plott, C. R., Little, J. T., & Parks, R. P. (1975). Individual choices when objects have “ordinal” properties. Review of Economic Studies, 42, 403–413.

    Article  MATH  Google Scholar 

  42. Saaty, T. L. (2005). The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In J. Figueira, S. Greco, & M. Ehrgott (Eds.), Multiple criteria decision analysis (pp. 345–407). Springer.

  43. Sabin, D., & Freuder, E. (1994). Contradicting conventional wisdom in constraint satisfaction. In Proc. eleventh European conference on artificial intelligence (pp. 125–129). Wiley.

  44. Smith, B. M., & Grant, S. A. (1998). Trying harder to fail first. In Proc. thirteenth European conference on artificial intelligence—ECAI’98 (pp. 249–253). Wiley.

  45. Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and easy problems. In Proc. fourteenth international joint conference on artificial intelligence (pp. 631–637). Morgan Kaufmann.

  46. Wallace, R. J., & Wilson, N. (2006). Conditional lexicographic orders in constraint satisfaction problems. In J. C. Beck, & B. M. Smith (eds.), Proc. third international conference on integration of AI and OR techniques in constraint programming - CPAIOR 2006. LNCS (no. 3990, pp. 258–272). Berlin: Springer.

  47. Wilson, N. (2004a). Consistency and constrained optimisation for conditional preferences. In Proc. sixteenth European conference on artificial intelligence (pp. 888–892). IOS Press.

  48. Wilson, N. (2004b). Extending CP-nets with stronger conditional preference statements. In Proc. nineteenth national conference on artificial intelligence (pp. 735–741). AAAI/MIT.

  49. Wilson, N. (2006). An efficient upper approximation for conditional preference. In Proc. seventeenth European conference on artificial intelligence (pp. 472–476). IOS Press.

  50. Wallace, R. J., & Wilson, N. (2009). Conditional lexicographic orders in constraint satisfaction problems. Annals of Operations Research special issue entitled “Constraint Programming, Artificial Intelligence and Operations Research”.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Wallace.

Additional information

This work received support from Science Foundation Ireland under Grants 00/PI.1/C075 and 05/IN/1886.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freuder, E.C., Heffernan, R., Wallace, R.J. et al. Lexicographically-ordered constraint satisfaction problems. Constraints 15, 1–28 (2010). https://doi.org/10.1007/s10601-009-9069-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-009-9069-0

Keywords

Navigation