Skip to main content
Log in

Constraint Programming in Structural Bioinformatics

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Bioinformatics aims at applying computer science methods to the wealth of data collected in a variety of experiments in life sciences (e.g. cell and molecular biology, biochemistry, medicine, etc.) in order to help analysing such data and eliciting new knowledge from it. In addition to string processing bioinformatics is often identified with machine learning used for mining the large banks of bio-data available in electronic format, namely in a number of web servers. Nevertheless, there are opportunities of applying other computational techniques in some bioinformatics applications. In this paper, we report the application of constraint programming to address two structural bioinformatics problems, protein structure prediction and protein interaction (docking). The efficient application of constraint programming requires innovative modelling of these problems, as well as the development of advanced propagation techniques (e.g. global reasoning and propagation), which were adopted in Chemera, a system that is currently used to support biochemists in their research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida Santos, J. C. (2006). Mining protein Structure Data. M.Sc. thesis, New University of Lisbon.

  2. Backofen, R., & Will, S. (2006). A Constraint-based Approach to Fast and Exact Structure Prediction in Three-dimensional Protein Models, Constraints (vol. 11, no 1). Berlin: Springer (January).

    Google Scholar 

  3. Correia, M., & Barahona, P. (2004). Machine learned heuristics to improve constraint satisfaction, 17th Brazilian Symposium on Artificial Intelligence, SBIA’04 (Proceedings). In A. L. C.Balzan, Labidi, & S. (Eds.) LNCS (vol. 3171, (pp. 103–113)). Maranhão, Brazil: Springer.

  4. Correia, M., Barahona, P., & Azevedo, F. (2005). CaSPER: A programming environment for development and integration of constraint solvers. In Azevedo, F., et al., eds., Proceedings of the First International Workshop on Constraint Programming Beyond Finite Integer Domains (BeyondFD’05), pages 59–73.

  5. Dal Palú, A., Dovier, A., & Fogolari, F. (2004). Constraint logic programming approach to protein structure prediction. BMC Bioinformatics, 5, 186(30 November 2004).

    Article  Google Scholar 

  6. Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. J. Chem. Soc., 125(7), 1731–1737 Feb 19.

    Article  Google Scholar 

  7. Fages, F., Soliman, S., & Chabrier-Rivier, N. (2004). Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. J. Biol. Phys. Chem., 4(2), 64–73 October 2004.

    Article  Google Scholar 

  8. Güntert, P., Mumenthaler, C., & Wüthrich, K. (1997). Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol., 273, 283–298.

    Article  Google Scholar 

  9. Harvey, W., & Ginsberg, M. (1995). Limited discrepancy search. In Mellish, C., ed., Proceedings of IJCAI, International Joint Conference on Artificial Intelligence. Montreal.

  10. Welcome to Chemera and Bigger. Available at: http://www.cqfb.fct.unl.pt/bioin/chemera/.

  11. Impagliazzo, A., Krippahl, L., & Ubbink, M. (2005). Pseudoazurin: Nitrite reductase interactions. ChemBioChem, 6, 1648–1653.

    Article  Google Scholar 

  12. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., & Vakser, I. A. (1992). Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Nat. Acad. Sci. U. S. A., 89(6), 2195–2199 Mar 15.

    Article  Google Scholar 

  13. Krippahl, L. (2003) Integrating Protein Structural Information. Ph.D. dissertation, FCT/UNL.

  14. Krippahl, L. (2006) Integrating web resources to model protein structure and function. RW-SISS-’2006 (Proceedings). In Barahona, P., ed., Lecture Notes in Computer Science, vol. 4126, pages 184–196. Springer, Berlin, September.

  15. Krippahl, L., & Barahona, P. (1999). Applying Constraint Programming to Protein Structure Determination, Principles and Practice of Constraint Programming pp. 289–302. Berlin: Springer.

    Google Scholar 

  16. Krippahl, L., & Barahona, P. (2002). PSICO: Solving protein structures with constraint programming and optimisation. Constraints, 7, 317–331.

    Article  MathSciNet  MATH  Google Scholar 

  17. Krippahl, L., & Barahona, P. (2003). Propagating N-ary rigid-body constraints, principles and practice of constraint programming, CP’2003 (Proceedings). In F.Rossi (Ed.) Lecture Notes in Computer Science (vol. 2833, (pp. 452–465)). Berlin: Springer October, 2003.

    Google Scholar 

  18. Krippahl, L., & Barahona, P. (2005). Applying constraint programming to rigid body protein docking, principles and practice of constraint programming, CP’2005 (Proceedings). In P. van Beek (Ed.) Lecture Notes in Computer Science (vol. 3709, (pp. 373–387)). Berlin: Springer October.

    Google Scholar 

  19. Krippahl, L., Moura, J. J., & Palma, P. N. (2003). Modeling protein complexes with BiGGER. Proteins, 52(1), 19–23.

    Article  Google Scholar 

  20. Moont, G., Gabb, H. A., & Sternberg, M. J. E. (1999). Use of pair potentials across protein interfaces in screening predicted docked complexes. Proteins, V35–3, 364–373.

    Article  Google Scholar 

  21. Morelli, X., Dolla, A., Czjzek, M., Palma, P. N., Blasco, F., Krippahl, L., et al. (2000). Heteronuclear NMR and soft docking: an experimental approach for a structural model of the cytochrome c553-ferredoxin complex. Biochemistry, 39, 2530–2537.

    Article  Google Scholar 

  22. Morelli, X., Palma, P. N., Guerlesquin, F., & Rigby, A. C. (2001). A novel approach for assessing macromolecular complexes combining soft-docking calculations with NMR data. Protein Sci., 10, 2131–2137.

    Article  Google Scholar 

  23. Palma, P. N., Krippahl, L., Wampler, J. E., & Moura, J. J. G. (2000). BiGGER: A new (soft) docking algorithm for predicting protein interactions. Proteins, 39, 372–384.

    Article  Google Scholar 

  24. Palma, P. N., Lagoutte, B., Krippahl, L., Moura, J. J., & Guerlesquin, F. (2005). Synechocystis ferredoxin/ferredoxin—NADP(+)-reductase/NADP+ complex: Structural model obtained by NMR-restrained docking. FEBS Lett, 579(21), 4585–4590 Aug 29.

    Google Scholar 

  25. Pettigrew, G. W., Goodhew, C. F., Cooper, A., Nutley, M., Jumel, K., & Harding, S. E. (2003). The electron transfer complexes of cytochrome c peroxidase from Paracoccus denitrificans. Biochemistry, 42(7), 2046–2055 Feb 25.

    Article  Google Scholar 

  26. Pettigrew, G. W., Pauleta, S. R., Goodhew, C. F., Cooper, A., Nutley, M., Jumel, K., et al. (2003). electron transfer complexes of cytochrome c peroxidase from Paracoccus denitrificans containing more than one cytochrome. Biochemistry, 42, 11968–11981.

    Article  Google Scholar 

  27. Pettigrew, G. W., Prazeres, S., Costa, C., Palma, N., Krippahl, L., Moura, I., et al. (1999). The structure of an electron transfer complex containing a cytochrome c and a peroxidase. J. Am. Chem. Soc., 274(16), 11383–11389 Apr 16.

    Google Scholar 

  28. Simons, K. T., Kooperberg, C., Huang, E., & Baker, D. (1997). Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol., 268, 209–225.

    Article  Google Scholar 

  29. Wang, L., Mettu, R., & Donald, B. (2006). A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data. J. Comp. Biol., 13(7), 1267–1288.

    Article  MathSciNet  Google Scholar 

  30. Wolfson, H. J., & Rigoutsos, I. (1997). Geometric hashing: An overview. IEEE Computational Science & Engineering Archive, 4(4), 10–21 (October 1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Barahona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barahona, P., Krippahl, L. Constraint Programming in Structural Bioinformatics. Constraints 13, 3–20 (2008). https://doi.org/10.1007/s10601-007-9036-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-007-9036-6

Keywords

Navigation