Skip to main content
Log in

Bifurcation analysis of the spectrum of two-dimensional thermal structures evolving with blow-up

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

Abstract

The article considers the self-similar solution of the nonlinear heat-conduction equation with a three-dimensional source evolving under blow-up conditions. The self-similar problem is a boundary-value problem for a nonlinear elliptical equation, which has a nonunique solution. The eigenfunction spectrum of the self-similar problem is investigated in the two-dimensional space. The problem is solved by Newton’s iterative method on a grid. Newton’s method is implemented using several alternative initial approximations. The eigenfunctions are continued in a parameter and their bifurcations are investigated. Several scenarios are identified for the evolution of the two-dimensional structures when the parameter is changed. The evolution of the eigenfunctions depends on the class and type of the particular structure. New types of structures are identified and the eigenfunctions are systematized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blow-up Modes. The Evolution of an Idea [in Russian], Nauka, Moscow (1998).

  2. A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up Modes in Problems for Quasilinear Parabolic Equations [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  3. V. A. Galaktionov and J. L. Vazquez, “The problem of blow-up in nonlinear parabolic equations,” J. Discr. Contin. Dynam. Syst., 8, No. 2, 399–433 (2002).

    MATH  MathSciNet  Google Scholar 

  4. N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhailov, and A. A. Samarskii, “Localization of thermonuclear combustion in a plasma with electron heat conduction,” Pisma ZhÉTF, 26, No. 9 (1978).

  5. S. P. Kurdyumov, G. G. Malinetskii, and A. B. Potapov, “Time-dependent structures, dynamical chaos, cellular automata,” in: New in Synergetics. Puzzles of the World of Nonequilibrium Structures [in Russian], Nauka, Moscow (1996), p. 95.

    Google Scholar 

  6. A. I. Lobanov and T. K. Starozhilova, “Time-dependent structures in the blood-clotting model,” in: New in Synergetics. A Glimpse into the Third Millennium [in Russian], Nauka, Moscow (2002), pp. 346–367.

    Google Scholar 

  7. N. A. Kirichenko, “Localized time-dependent structures in laser thermochemistry,” in: Blow-up Modes. The Evolution of an Idea [in Russian], Nauka, Moscow (1998), pp. 217–230.

    Google Scholar 

  8. V. A. Belavin and S. P. Kurdyumov, “Blow-up modes in a demographic system: Nonlinearity amplification scenario,” Zh. Vychisl. Matem. Mat. Fiziki, 40, No. 2, 238–251 (2000).

    MATH  Google Scholar 

  9. S. P. Kapitsa, “A phenomenological theory of world population growth,” Uspekhi Fiz. Nauk, 166, No. 1, 63–80 (1996).

    Article  Google Scholar 

  10. S. P. Kapitsa, G. G. Kurdyumov, and G. G. Malinetskii, Synergetics and Prediction of the Future [in Russian], Editorial URSS, Moscow (2001).

    Google Scholar 

  11. E. N. Knyazev and S. P. Kurdyumov, Foundations of Synergetics [in Russian], Aleteiya, St. Petersburg (2002).

    Google Scholar 

  12. A. A. Samarskii, N. V. Zmitrenko, S. P. Kurdyumov, A. P. Mikhailov, “Thermal structures and fundamental length in a medium with nonlinear thermal conductivity and a three-dimensional heat source,” Dokl. Akad. Nauk SSSR, 277, No. 2 (1976).

    Google Scholar 

  13. A. A. Samarskii, G. G. Elenin, N. V. Zmitrenko, and others, “Combustion in a nonlinear medium in the form of complex structures,” Dokl. Akad. Nauk SSSR, 237, No. 6 (1977).

  14. G. G. Elenin, S. P. Kurdyumov, and A. A. Samarskii, “Time-dependent dissipative structures in a nonlinear heat-conducting medium,” Zh. Vychisl. Matem. Mat. Fiziki, 23, No. 3, 380–390 (1983).

    MATH  MathSciNet  Google Scholar 

  15. S. P. Kurdyumov, E. S. Kurkina, and G. G. Malinetskii, and A. A. Samarskii, “Dissipative structures in a inhomogeneous nonlinear combustible medium,” Dokl. Akad. Nauk SSSR, 251, No. 3 (1980).

    Google Scholar 

  16. S. N. Dimova, M. S. Kasichev, and S. P. Kurdyumov, “Numerical analysis of eigenfunctions for the combustion of a nonlinear medium in the radially symmetric case,” Zh. Vychisl. Matem. Mat. Fiziki, 29, No. 11, 1683–1704 (1989).

    Google Scholar 

  17. S. P. Kurdyumov, “Eigenfunctions for the combustion of a nonlinear medium and constructive laws for deriving its organization,” in: Modern Topics in Mathematical Physics and Computational Mathematics [in Russian], Nauka, Moscow (1982), pp. 217–243.

    Google Scholar 

  18. S. P. Kurdumov, “Evolution and self-organization laws in complex systems,” Int. J. Mod. Phys., C1, 299–327 (1990).

    Google Scholar 

  19. E. S. Kurkina, “Investigating the spectrum of self-similar solutions of the nonlinear heat-conduction equation,” Prikl. Mat. Inform., Izd. MGU, Moscow, No. 16, 27–65 (2004).

  20. E. S. Kurkina and S. P. Kurdyumov, “The spectrum of dissipative structures in the presence of blow-up,” Dokl. Akad. Nauk, 395, No. 6, 1–6 (2004).

    MathSciNet  Google Scholar 

  21. S. P. Kurdyumov and E. S. Kurkina, “The eigenfunction spectrum of the self-similar problem for a nonlinear heat-conduction equation with a source,” Zh. Vychisl. Matem. Mat. Fiziki, 44, No. 9, 1619–1637 (2004).

    MATH  MathSciNet  Google Scholar 

  22. E. S. Kurkina, “The atom as a combustion structure in a nonlinear medium,” in: Synergetics. Aspects of Science and Humanities [in Russian], Proc. of a Seminar, MIFI, No. 7, Moscow (2004), pp. 37–51.

  23. E. S. Kurkina, S. P. Kurdyumov, “Quantum properties of a nonlinear dissipative medium,” Dokl. Akad. Nauk, 399, No. 6, 1–6 (2004).

    MathSciNet  Google Scholar 

  24. S. P. Kurdyumov, E. S. Kurkina and A. B. Potapov, Investigating the Multidimensional Architecture of Eigenfunctions of a Nonlinear Medium [in Russian], Preprint No. 75, IPMatem. Akad. Nauk SSSR, Moscow (1982).

    Google Scholar 

  25. S. P. Kurdyumov, E. S. Kurkina, A. B. Potapov, and A. A. Samarskii, “The architecture of multidimensional thermal structures,” Dokl. Akad. Nauk SSSR, 274, No. 5, 1071–1075 (1984).

    Google Scholar 

  26. S. P. Kurdyumov, E. S. Kurkina, A. B. Potapov, and A. A. Samarskii, “Complex multidimensional combustion structures in a nonlinear medium,” Zh. Vychisl. Matem. Mat. Fiziki, 26, No. 8, 1189–1205 (1986).

    MATH  Google Scholar 

  27. A. B. Potapov, Constructing Two-Dimensional Eigenfunctions for a Nonlinear Medium [in Russian], Preprint No. 8, IPMatem. Akad. Nauk SSSR, Moscow (1986).

    Google Scholar 

  28. S. N. Dimova, M. S. Kasichev, and M. Koleva, Analysis of combustion eigenfunction for a nonlinear medium in polar coordinates by the finite-element method,” Matem. Modelirovanie, 4, No. 3, 74–83 (1992).

    Google Scholar 

  29. E. S. Kurkina, “Two-and three-dimensional thermal structure in a medium with nonlinear thermal conductivity,” Prikl. Mat. Inform., Izd. MGU, No. 17, Moscow (2004), pp. 84–112.

  30. E. Doedel, H. B. Keller, and J. Kernevez, “Numerical analysis and control of bifurcation problems. I. Bifurcation in finite dimensions, II. Bifurcation in infinite dimensions,” Int. J. Bifurcation Chaos, 1, No. 3, 493–520, 1, No. 4, 745–772 (1991).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Additional information

__________

Translated from Prikladnaya Matematika i Informatika, No. 22, pp. 50–75, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurkina, E.S., Nikol’skii, I.M. Bifurcation analysis of the spectrum of two-dimensional thermal structures evolving with blow-up. Comput Math Model 17, 320–340 (2006). https://doi.org/10.1007/s10598-006-0027-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-006-0027-z

Keywords

Navigation