Skip to main content
Log in

Investigation of thermal-hydro-mechanical coupled fracture propagation considering rock damage

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Thermal-hydro-mechanical (THM) coupled fracture propagation is common in underground engineering. Rock damage, as an inherent property of rock, significantly affects fracture propagation, but how it influences the THM coupled fracturing remains stubbornly unclear. A pore-scale THM coupling model is developed to study this problem, which combines the lattice Boltzmann method (LBM), the discrete element method (DEM), and rock damage development theory together for the first time. This model can more accurately calculate the exchanged THM information at the fluid-solid boundary and fluid conductivity dependent on fracture and rock damage. Based on the developed model, the synergistic effect of injected temperature difference (fluid temperature below rock temperature) and rock damage (characterized by the parameter “critical fracture energy”, abbreviated as “CFE”) on fracture propagation of shale are investigated particularly. It is found that: (1) the generation of branched cracks is closely related to the temperature response frontier, and the fracture process zone of single bond failure increases in higher CFE. (2) through the analysis of micro failure events, hydraulic fracturing is more pronounced in the low CFE, while thermal fracturing displays the opposite trend. The fluid conductivity of fractured rock increases with a higher injected temperature difference due to the more penetrated cracks and wider fracture aperture. However, this enhancement weakens when rock damage is significant. (3) in the multiple-layered rock with various CFEs, branched cracks propagating to adjacent layers are more difficult to form when the injection hole stays in the layer with significant rock damage than without rock damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li, T., Tang, C., Rutqvist, J., Hu, M.: TOUGH-RFPA: coupled thermal-hydraulic-mechanical rock failure process analysis with application to deep geothermal wells. Int. J. Rock Mech. Min. Sci. 142, 104726 (2021). https://doi.org/10.1016/j.ijrmms.2021.104726

    Article  Google Scholar 

  2. Zhao, Y., Feng, Z., Feng, Z., Yang, D., Liang, W.: THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573K and buried depth 6000-7000M. Energy. 82, 193–205 (2015). https://doi.org/10.1016/j.energy.2015.01.030

    Article  Google Scholar 

  3. Yan, C., Xie, X., Ren, Y., Ke, W., Wang, G.: A FDEM-based 2D coupled thermal-hydro-mechanical model for multiphysical simulation of rock fracturing. Int. J. Rock Mech. Min. Sci. 149, 104964 (2022). https://doi.org/10.1016/j.ijrmms.2021.104964

    Article  Google Scholar 

  4. Tomac, I., Gutierrez, M.: Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM. J. Rock Mech. Geotech. Eng. 9, 92–104 (2017). https://doi.org/10.1016/j.jrmge.2016.10.001

    Article  Google Scholar 

  5. Morrow, C.A., Moore, D.E., Lockner, D.A.: Permeability reduction in granite under hydrothermal conditions. J. Geophys. Res. Solid Earth. 106, 30551–30560 (2001). https://doi.org/10.1029/2000JB000010

    Article  Google Scholar 

  6. Cai, C., Li, G., Huang, Z., Shen, Z., Tian, S., Wei, J.: Experimental study of the effect of liquid nitrogen cooling on rock pore structure. J. Nat. Gas Sci. Eng. 21, 507–517 (2014). https://doi.org/10.1016/j.jngse.2014.08.026

    Article  Google Scholar 

  7. Bennour, Z., Ishida, T., Nagaya, Y., Chen, Y., Nara, Y., Chen, Q., Sekine, K., Nagano, Y.: Crack extension in hydraulic fracturing of shale cores using viscous oil, water, and liquid carbon dioxide. Rock Mech. Rock. Eng. 48, 1463–1473 (2015). https://doi.org/10.1007/s00603-015-0774-2

    Article  Google Scholar 

  8. Garipov, T.T., Hui, M.H.: Discrete fracture modeling approach for simulating coupled thermo-hydro-mechanical effects in fractured reservoirs. Int. J. Rock Mech. Min. Sci. 122, 104075 (2019). https://doi.org/10.1016/j.ijrmms.2019.104075

    Article  Google Scholar 

  9. Guo, T., Tang, S., Liu, S., Liu, X., Zhang, W., Qu, G.: Numerical simulation of hydraulic fracturing of hot dry rock under thermal stress. Eng. Fract. Mech. 240, 107350 (2020). https://doi.org/10.1016/j.engfracmech.2020.107350

    Article  Google Scholar 

  10. Zeng, Q., Yao, J., Shao, J.: An extended finite element solution for hydraulic fracturing with thermo-hydro-elastic–plastic coupling. Comput. Methods Appl. Mech. Eng. 364, 112967 (2020). https://doi.org/10.1016/j.cma.2020.112967

    Article  Google Scholar 

  11. Jiao, Y., Zhang, X., Zhang, H., Li, H., Yang, S., Li, J.: A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses. Comput. Geotech. 67, 142–149 (2015). https://doi.org/10.1016/j.compgeo.2015.03.009

    Article  Google Scholar 

  12. Li, W., Soliman, M., Han, Y.: Microscopic numerical modeling of Thermo-hydro-mechanical mechanisms in fluid injection process in unconsolidated formation. J. Pet. Sci. Eng. 146, 959–970 (2016). https://doi.org/10.1016/j.petrol.2016.08.010

    Article  Google Scholar 

  13. Wang, Y., Ju, Y., Chen, J., Song, J.: Adaptive finite element–discrete element analysis for the multistage supercritical CO2 fracturing and microseismic modelling of horizontal wells in tight reservoirs considering pre-existing fractures and thermal-hydro-mechanical coupling. J. Nat. Gas Sci. Eng. 61, 251–269 (2019). https://doi.org/10.1016/j.jngse.2018.11.022

    Article  Google Scholar 

  14. Chen, Z., Wang, M.: Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process. J. Geophys. Res. Solid Earth. 122, 3410–3429 (2017). https://doi.org/10.1002/2017JB013989

    Article  Google Scholar 

  15. Caulk, R., Sholtès, L., Krzaczek, M., Chareyre, B.: A pore-scale thermo–hydro-mechanical model for particulate systems. Comput. Methods Appl. Mech. Eng. 372, 113292 (2020). https://doi.org/10.1016/j.cma.2020.113292

    Article  Google Scholar 

  16. Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method - Principles and Practice. Springer (2016)

    Google Scholar 

  17. Wang, M., Feng, Y.T., Owen, D.R.J., Qu, T.M.: A novel algorithm of immersed moving boundary scheme for fluid–particle interactions in DEM–LBM. Comput. Methods Appl. Mech. Eng. 346, 109–125 (2019). https://doi.org/10.1016/j.cma.2018.12.001

    Article  Google Scholar 

  18. Jiao, K., Han, D., Li, J., Bai, B., Gong, L., Yu, B.: A novel LBM-DEM based pore-scale thermal-hydro-mechanical model for the fracture propagation process. Comput. Geotech. 139, 104418 (2021). https://doi.org/10.1016/j.compgeo.2021.104418

    Article  Google Scholar 

  19. Khalilpour, S., BaniAsad, E., Dehestani, M.: A review on concrete fracture energy and effective parameters. Cem. Concr. Res. 120, 294–321 (2019). https://doi.org/10.1016/j.cemconres.2019.03.013

    Article  Google Scholar 

  20. Ma, G., Zhou, W., Chang, X.L.: Modeling the particle breakage of rockfill materials with the cohesive crack model. Comput. Geotech. 61, 132–143 (2014). https://doi.org/10.1016/j.compgeo.2014.05.006

    Article  Google Scholar 

  21. Mahabadi, O.K., Lisjak, A., Munjiza, A., Grasselli, G.: Y-Geo : new combined finite-discrete element numerical code for geomechanical applications. Int J Geomech. 12, 676–688 (2012). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216

    Article  Google Scholar 

  22. Camanho, P.P., Davila, C.G., Moura, D.: Numerical simulation of mixed-mode progressive delamination in composite materials. J. Compos. Mater. 37, 1415–1438 (2003). https://doi.org/10.1177/002199803034505

    Article  Google Scholar 

  23. Gmati, H., Mareau, C., Ammar, A., El Arem, S.: A phase-field model for brittle fracture of anisotropic materials. Int. J. Numer. Methods Eng. 121, 3362–3381 (2020). https://doi.org/10.1002/nme.6361

    Article  Google Scholar 

  24. Guo, J., Lu, Q., Zhu, H., Wang, Y., Ma, L.: Perforating cluster space optimization method of horizontal well multi-stage fracturing in extremely thick unconventional gas reservoir. J. Nat. Gas Sci. Eng. 26, 1648–1662 (2015). https://doi.org/10.1016/j.jngse.2015.02.014

    Article  Google Scholar 

  25. Guo, J., Lu, Q., Chen, H., Wang, Z., Tang, X., Chen, L.: Quantitative phase field modeling of hydraulic fracture branching in heterogeneous formation under anisotropic in-situ stress. J. Nat. Gas Sci. Eng. 56, 455–471 (2018). https://doi.org/10.1016/j.jngse.2018.06.009

    Article  Google Scholar 

  26. Liu, Z., Pan, Z., Li, S., Zhang, L., Wang, F., Han, L., Zhang, J., Ma, Y., Li, H., Li, W.: Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs. Energy. 241, 122845 (2022). https://doi.org/10.1016/j.energy.2021.122845

    Article  Google Scholar 

  27. Wang, F., Liu, S., Ji, K.: Numerical study on abrasive machining of rock using FDEM method. Simul. Model. Pract. Theory. 104, 102145 (2020). https://doi.org/10.1016/j.simpat.2020.102145

    Article  Google Scholar 

  28. Liu, L., Ji, S.: Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granul. Matter. 21, 1–16 (2019). https://doi.org/10.1007/s10035-019-0896-4

    Article  Google Scholar 

  29. Pezeshki, M., Loehnert, S., Wriggers, P.: 3D fracture modeling by extended finite element method and gradient enhanced damage. Pamm. 17, 263–264 (2017). https://doi.org/10.1002/pamm.201710101

    Article  Google Scholar 

  30. Wu, Z., Ma, L., Fan, L.: Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method. Eng. Fract. Mech. 200, 355–374 (2018). https://doi.org/10.1016/j.engfracmech.2018.08.015

    Article  Google Scholar 

  31. Galindo Torres, S., Pedroso, D., Williams, D., Li, L.: Breaking processes in three-dimensional bonded granular materials with general shapes. Comput. Phys. Commun. 183, 266–277 (2012). https://doi.org/10.1016/j.cpc.2011.10.001

    Article  Google Scholar 

  32. Behraftar, S., Galindo Torres, S., Scheuermann, A., Williams, D., Marques, E., Janjani Avarzaman, H.: A calibration methodology to obtain material parameters for the representation of fracture mechanics based on discrete element simulations. Comput. Geotech. 81, 274–283 (2017). https://doi.org/10.1016/j.compgeo.2016.08.029

    Article  Google Scholar 

  33. Chen, Z., Jin, X., Wang, M.: A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks. J. Mech. Phys. Solids. 116, 54–69 (2018). https://doi.org/10.1016/j.jmps.2018.03.023

    Article  Google Scholar 

  34. Zhang, Z.F., Eckert, J.: Unified tensile fracture criterion. Phys. Rev. Lett. 94, 1–4 (2005). https://doi.org/10.1103/PhysRevLett.94.094301

    Article  Google Scholar 

  35. Wu, Z., Zhou, Y., Weng, L., Liu, Q., Xiao, Y.: Investigation of thermal-induced damage in fractured rock mass by coupled FEM-DEM method. Comput. Geosci. 24, 1833–1843 (2020). https://doi.org/10.1007/s10596-020-09970-5

    Article  Google Scholar 

  36. Ju, Y., Zhang, Q., Zheng, J., Chang, C., Xie, H.: Fractal model and lattice Boltzmann method for characterization of non-Darcy flow in rough fractures. Sci. Rep. 7, 1–9 (2017). https://doi.org/10.1038/srep41380

    Article  Google Scholar 

  37. Chen, L., Kang, Q., Viswanathan, H., Tao, W.: Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals. Water Resour. Res. 50, 9343–9365 (2014). https://doi.org/10.1002/2014WR015646

    Article  Google Scholar 

  38. Chen, Y., Müller, C.R.: A Dirichlet boundary condition for the thermal lattice Boltzmann method. Int. J. Multiph. Flow. 123, 103184 (2020). https://doi.org/10.1016/j.ijmultiphaseflow.2019.103184

    Article  Google Scholar 

  39. Du, R., Shi, B., Chen, X.: Multi-relaxation-time lattice Boltzmann model for incompressible flow. Phys. Lett. A. 359, 564–572 (2006). https://doi.org/10.1016/j.physleta.2006.07.074

    Article  Google Scholar 

  40. Huang, R., Wu, H.: A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation. J. Comput. Phys. 274, 50–63 (2014). https://doi.org/10.1016/j.jcp.2014.05.041

    Article  Google Scholar 

  41. Boutt, D., Cook, B., McPherson, B., Williams, J.: Direct simulation of fluid-solid mechanics in porous media using the discrete element and lattice-Boltzmann methods. J. Geophys. Res. Solid Earth. 112, 1–13 (2007). https://doi.org/10.1029/2004JB003213

    Article  Google Scholar 

  42. Li, L., Chen, C., Mei, R., Klausner, J.F.: Conjugate heat and mass transfer in the lattice Boltzmann equation method. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 89, (2014). https://doi.org/10.1103/PhysRevE.89.043308

  43. Wang, Q.Y., Zhu, W.C., Xu, T., Niu, L.L., Wei, J.: Numerical simulation of rock creep behavior with a damage-based constitutive law. Int. J. Geomech. 17, 04016044 (2017). https://doi.org/10.1061/(asce)gm.1943-5622.0000707

    Article  Google Scholar 

  44. Ma, G., Zhang, Y., Zhou, W., Ng, T.T., Wang, Q., Chen, X.: The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid. Int. J. Impact Eng. 113, 132–143 (2018). https://doi.org/10.1016/j.ijimpeng.2017.11.016

    Article  Google Scholar 

  45. Sun, L., Liu, Q., Grasselli, G., Tang, X.: Simulation of thermal cracking in anisotropic shale formations using the combined finite-discrete element method. Comput. Geotech. 117, 103237 (2020). https://doi.org/10.1016/j.compgeo.2019.103237

    Article  Google Scholar 

  46. Andrea Lisjak, B.: Investigating the Influence of Mechanical anisotropy on the Fracturing Behaviour of Brittle Clay Shales with Application to Deep Geological Repositories. http://hdl.handle.net/1807/43649, (2013)

  47. Eshghinejadfard, A., Thévenin, D.: Numerical simulation of heat transfer in particulate flows using a thermal immersed boundary lattice Boltzmann method. Int. J. Heat Fluid Flow. 60, 31–46 (2016). https://doi.org/10.1016/j.ijheatfluidflow.2016.04.002

    Article  Google Scholar 

  48. Tao, S., He, Q., Chen, B., Qin, F.G.F.: Distribution function correction-based immersed boundary lattice Boltzmann method for thermal particle flows. Comput. Part. Mech. 8, 459–469 (2020). https://doi.org/10.1007/s40571-020-00344-3

    Article  Google Scholar 

  49. Takahashi, T., Hashida, T.: Microcrack Formation and Fracture Characteristics in Granite Under Supercritical Water Conditions. In: Stephanson, O.B.T.-E.G.-E.B.S. (ed.) Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-Systems, pp. 685–690. Elsevier (2004)

    Google Scholar 

  50. Lu, Y., Li, H., Lu, C., Wu, K., Chen, Z., Li, J., Tang, X., Huang, X., Tang, M.: Predicting the fracture initiation pressure for perforated water injection wells in fossil energy development. Int. J. Hydrog. Energy. 44, 16257–16270 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.208

    Article  Google Scholar 

  51. Kashtanov, A.V., Petrov, Y.V., Pugno, N., Carpinteri, A.: Dynamic fracture as a process of nonlinear damage wave propagation. Int. J. Fract. 150, 227–240 (2008). https://doi.org/10.1007/s10704-008-9223-5

    Article  Google Scholar 

  52. Li, Z., Li, L., Huang, B., Zhang, L., Li, M., Zuo, J., Li, A., Yu, Q.: Numerical investigation on the propagation behavior of hydraulic fractures in shale reservoir based on the DIP technique. J. Pet. Sci. Eng. 154, 302–314 (2017). https://doi.org/10.1016/j.petrol.2017.04.034

    Article  Google Scholar 

  53. Song, Z., Konietzky, H., Herbst, M.: Three-dimensional particle model based numerical simulation on multi-level compressive cyclic loading of concrete. Constr. Build. Mater. 225, 661–677 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.260

    Article  Google Scholar 

  54. Wan, L., Hou, B., Meng, H., Chang, Z., Muhadasi, Y., Chen, M.: Experimental investigation of fracture initiation position and fluid viscosity effect in multi-layered coal strata. J. Pet. Sci. Eng. 182, 106310 (2019). https://doi.org/10.1016/j.petrol.2019.106310

    Article  Google Scholar 

Download references

Acknowledgements

The study is supported by the National Natural Science Foundation of China (No. 51936001, No. 51904031), Natural Science Foundation of Beijing (No. 22C20027) and Award Cultivation Foundation from Beijing Institute of Petrochemical Technology (No. BIPTACF-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongxu Han.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, K., Han, D., Wang, D. et al. Investigation of thermal-hydro-mechanical coupled fracture propagation considering rock damage. Comput Geosci 26, 1167–1187 (2022). https://doi.org/10.1007/s10596-022-10155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-022-10155-5

Keywords

Navigation