Skip to main content
Log in

Integrating data-to-data correlation into inverse distance weighting

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

As a typical spatial interpolation method with high efficiency and simplicity, inverse distance weighting (IDW) is almost a standard estimator in numerous fields such as geosciences and environmental science. However, it ignores the data-to-data correlation, which directly leads to unfavorable estimates with irregularly distributed samples. To address this issue, we propose a novel approach, termed dual IDW (DIDW). First, the average distance from one sample to others is employed to measure the data redundancy. Second, we impose an additional exponent on the average distance to make its importance adjustable. Last, this data-to-data distance is incorporated into the traditional IDW to account for the spatial configuration of neighborhoods in the interpolation. Consequently, DIDW flexibly takes both data-to-unknown and data-to-data distances into account. Only those samples that are close to the estimated location but apart from other sampled data would be assigned with large estimation weights. Details of its application and the validity are illustrated using a case study based on the public Walker Lake dataset. Our results indicate that the developed methods not only improve the interpolation accuracy significantly compared with the traditional IDW, but also slightly outperform ordinary kriging in the case where the sample dataset is too small to capture an appropriate spatial continuity, demonstrating that DIDW is valuable to be applied in a broader context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kane, V.E., Begovich, C.L., Butz, T.R., Myers, D.E.: Interpretation of regional geochemistry using optimal interpolation parameters. Comput. Geosci. 8(2), 117–135 (1982). https://doi.org/10.1016/0098-3004(82)90016-4

    Article  Google Scholar 

  2. Ding, Q., Wang, Y., Zhuang, D.F.: Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions. J. Environ. Manag. 212, 23–31 (2018). https://doi.org/10.1016/j.jenvman.2018.01.074

    Article  Google Scholar 

  3. Babak, O., Deutsch, C.V.: Uncertainty as the overlap of alternate conditional distributions. Comput. Geosci. 12(4), 503–512 (2008). https://doi.org/10.1007/s10596-008-9089-7

    Article  Google Scholar 

  4. Liang, Q., Nittel, S., Whittier, J.C., Bruin, S.: Real-time inverse distance weighting interpolation for streaming sensor data. Trans. GIS. 22(5), 1179–1204 (2018). https://doi.org/10.1111/tgis.12458

    Article  Google Scholar 

  5. Li, J., Heap, A.D.: Spatial interpolation methods applied in the environmental sciences: a review. Environ. Model. Softw. 53, 173–189 (2014). https://doi.org/10.1016/j.envsoft.2013.12.008

    Article  Google Scholar 

  6. Dai, F.Q., Zhou, Q.G., Lv, Z.Q., Wang, X.M., Liu, G.C.: Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Indic. 45, 184–194 (2014). https://doi.org/10.1016/j.ecolind.2014.04.003

    Article  Google Scholar 

  7. Oliver, M.A., Webster, R.: A tutorial guide to geostatistics: computing and modelling variograms and kriging. Catena. 113, 56–69 (2014). https://doi.org/10.1016/j.catena.2013.09.006

    Article  Google Scholar 

  8. Myers, D.E.: Spatial Interpolation - an overview. Geoderma. 62(1-3), 17–28 (1994). https://doi.org/10.1016/0016-7061(94)90025-6

    Article  Google Scholar 

  9. Goovaerts, P.: Geostatistics for natural resources evaluation. Oxford University Press, New York (1997)

    Google Scholar 

  10. Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4(3), 313–332 (1990). https://doi.org/10.1080/02693799008941549

    Article  Google Scholar 

  11. Fouedjio, F.: Second-order non-stationary modeling approaches for univariate geostatistical data. Stoch. Env. Res. Risk A. 31(8), 1887–1906 (2017). https://doi.org/10.1007/s00477-016-1274-y

    Article  Google Scholar 

  12. Zhu, R., Kyriakidis, P.C., Janowicz, K.: Beyond pairs: generalizing the geo-dipole for quantifying spatial patterns in geographic fields. In: Bregt, A., Sarjakoski, T., van Lammeren, R., Rip, F. (eds.) Societal geo-innovation, pp. 331–348. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  13. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data. In: Proceedings of the 1968 23rd ACM national conference, pp. 517–524. ACM, New York (1968)

    Chapter  Google Scholar 

  14. Chen, Q., Liu, G., Ma, X., Mariethoz, G., He, Z., Tian, Y., Weng, Z.: Local curvature entropy-based 3D terrain representation using a comprehensive Quadtree. ISPRS J. Photogramm. Remote Sens. 139, 30–45 (2018). https://doi.org/10.1016/j.isprsjprs.2018.03.001

    Article  Google Scholar 

  15. Loghmari, I., Timoumi, Y., Messadi, A.: Performance comparison of two global solar radiation models for spatial interpolation purposes. Renew. Sust. Energ. Rev. 82, 837–844 (2018). https://doi.org/10.1016/j.rser.2017.09.092

    Article  Google Scholar 

  16. Clarke, K.C.: Analytical and computer cartography. Prentice hall, Englewood Cliffs (1990)

    Google Scholar 

  17. Henderson, N., Pena, L.: The inverse distance weighted interpolation applied to a particular form of the path tubes method: theory and computation for advection in incompressible flow. Appl. Math. Comput. 304, 114–135 (2017). https://doi.org/10.1016/j.amc.2017.01.053

    Article  Google Scholar 

  18. Isaaks, E.H., Srivastava, R.M.: An introduction to applied geostatistics. Oxford University Press, Oxford (1989)

    Google Scholar 

  19. Bartier, P.M., Keller, C.P.: Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput. Geosci. 22(7), 795–799 (1996). https://doi.org/10.1016/0098-3004(96)00021-0

    Article  Google Scholar 

  20. Merwade, V.M., Maidment, D.R., Goff, J.A.: Anisotropic considerations while interpolating river channel bathymetry. J. Hydrol. 331(3-4), 731–741 (2006). https://doi.org/10.1016/j.jhydrol.2006.06.018

    Article  Google Scholar 

  21. Nalder, I.A., Wein, R.W.: Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric. For. Meteorol. 92(4), 211–225 (1998). https://doi.org/10.1016/S0168-1923(98)00102-6

    Article  Google Scholar 

  22. Price, D.T., McKenney, D.W., Nalder, I.A., Hutchinson, M.F., Kesteven, J.L.: A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agric. For. Meteorol. 101(2-3), 81–94 (2000). https://doi.org/10.1016/s0168-1923(99)00169-0

    Article  Google Scholar 

  23. Tomczak, M.: Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW) - cross-validation/jackknife approach. J. Geogr. Inf. Decis. Anal. 2(2), 18–30 (1998)

    Google Scholar 

  24. Zhu, R., Janowicz, K., Mai, G., Lab, S.: Making direction a first-class citizen of Tobler’s first law of geography. Trans. GIS. 23, (2019). https://doi.org/10.1111/tgis.12550

    Article  Google Scholar 

  25. Babak, O., Deutsch, C.V.: Statistical approach to inverse distance interpolation. Stoch. Env. Res. Risk A. 23(5), 543–553 (2009). https://doi.org/10.1007/s00477-008-0226-6

    Article  Google Scholar 

  26. Chang, C.L., Lo, S.L., Yu, S.L.: Applying fuzzy theory and genetic algorithm to interpolate precipitation. J. Hydrol. 314(1-4), 92–104 (2005). https://doi.org/10.1016/j.jhydrol.2005.03.034

    Article  Google Scholar 

  27. Guangqiu, H., Yue, G.Z.: A genetic algorithm approach to determining optimum parameters of distance power inverse ratio method. China’s Manganese Industry. 15(3), 20–25 (1997)

    Google Scholar 

  28. Lu, G.Y., Wong, D.W.: An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34(9), 1044–1055 (2008). https://doi.org/10.1016/j.cageo.2007.07.010

    Article  Google Scholar 

  29. Mueller, T.G., Dhanikonda, S.R.K., Pusuluri, N.B., Karathanasis, A.D., Mathias, K.K., Mijatovic, B., Sears, B.G.: Optimizing inverse distance weighted interpolation with cross-validation. Soil Sci. 170(7), 504–515 (2005). https://doi.org/10.1097/01.ss.0000175342.30164.89

    Article  Google Scholar 

  30. Teegavarapu, R.S.V., Chandramouli, V.: Improved weighting methods, deterministic and stochastic data-driven models for estimation of missing precipitation records. J. Hydrol. 312(1-4), 191–206 (2005). https://doi.org/10.1016/j.jhydrol.2005.02.015

    Article  Google Scholar 

  31. Greenberg, J.A., Rueda, C., Hestir, E.L., Santos, M.J., Ustin, S.L.: Least cost distance analysis for spatial interpolation. Comput. Geosci. 37(2), 272–276 (2011). https://doi.org/10.1016/j.cageo.2010.05.012

    Article  Google Scholar 

  32. Lukaszyk, S.: A new concept of probability metric and its applications in approximation of scattered data sets. Comput. Mech. 33(4), 299–304 (2004). https://doi.org/10.1007/s00466-003-0532-2

    Article  Google Scholar 

  33. O’Sullivan, D., Unwin, D.J.: Geographic Information Analysis, 2nd edn. Wiley, New York (2010)

    Book  Google Scholar 

  34. Armstrong, M.P., Marciano, R.J.: Local interpolation using a distributed parallel supercomputer. Int. J. Geogr. Inf. Syst. 10(6), 713–729 (1996). https://doi.org/10.1080/02693799608902106

    Article  Google Scholar 

  35. Achilleos, G.: Errors within the inverse distance weighted (IDW) interpolation procedure. Geocarto Int. 23(6), 429–449 (2008). https://doi.org/10.1080/10106040801966704

    Article  Google Scholar 

  36. Li, Z., Wu, C., Zhang, X., Weng, Z., Wang, P.: Uncertainty assessment for IDW ore grade estimates. Earth Sci. 40(11), 1796–1801 (2015)

    Google Scholar 

  37. Dirks, K.N., Hay, J.E., Stow, C.D., Harris, D.: High-resolution studies of rainfall on Norfolk Island Part II: interpolation of rainfall data. J. Hydrol. 208(3-4), 187–193 (1998). https://doi.org/10.1016/S0022-1694(98)00155-3

    Article  Google Scholar 

  38. Zimmerman, D., Pavlik, C., Ruggles, A., Armstrong, M.P.: An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math. Geol. 31(4), 375–390 (1999). https://doi.org/10.1023/A:1007586507433

    Article  Google Scholar 

  39. Clarke, K.C.: A comparative-analysis of polygon to raster interpolation methods. Photogramm. Eng. Remote. Sens. 51(5), 575–582 (1985)

    Google Scholar 

  40. Bier, V.A., de Souza, E.G.: Interpolation selection index for delineation of thematic maps. Comput. Electron. Agric. 136, 202–209 (2017). https://doi.org/10.1016/j.compag.2017.03.008

    Article  Google Scholar 

  41. Henley, S.: Nonparametric Geostatistics. Springer, Netherlands (1981)

    Book  Google Scholar 

  42. Deutsch, C.: DECLUS: a fortran 77 program for determining optimum spatial declustering weights. Comput. Geosci. 15(3), 325–332 (1989). https://doi.org/10.1016/0098-3004(89)90043-5

    Article  Google Scholar 

  43. Allasia, G.: Some physical and mathematical properties of inverse distance weighted methods for scattered data interpolation. Calcolo. 29(1), 97–109 (1992). https://doi.org/10.1007/BF02576764

    Article  Google Scholar 

  44. Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Econ. Geogr. 46(sup1), 234–240 (1970). https://doi.org/10.2307/143141

    Article  Google Scholar 

  45. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)? –arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7(3), 1247–1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  46. Efron, B., Gong, G.: A leisurely look at the bootstrap, the jackknife, and cross-validation. Am. Stat. 37(1), 36–48 (1983). https://doi.org/10.1080/00031305.1983.10483087

    Article  Google Scholar 

  47. Marcotte, D.: Generalized cross-validation for covariance model selection. Math. Geol. 27(5), 659–672 (1995). https://doi.org/10.1007/BF02093906

    Article  Google Scholar 

  48. Li, Z., Zhang, X., Clarke, K.C., Liu, G., Zhu, R.: An automatic variogram modeling method with high reliability fitness and estimates. Comput. Geosci. 120, 48–59 (2018). https://doi.org/10.1016/j.cageo.2018.07.011

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to two anonymous reviewers and Dr Daniel M. Tartakovsky for their valuable comments on the manuscript. We thank Dr Keith C. Clarke, Dr Gang Liu, and Dr Gregoire Mariethoz for their generous support in this research.

Funding

This research was supported by the National Natural Science Foundation of China (No: 41202231, 41972310 and U1711267), China Scholarship Council (No: 201606415064), and Guizhou science and technology project (No: [2017]2951).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanglin Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, X., Zhu, R. et al. Integrating data-to-data correlation into inverse distance weighting. Comput Geosci 24, 203–216 (2020). https://doi.org/10.1007/s10596-019-09913-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09913-9

Keywords

Navigation