Skip to main content
Log in

A global implicit solver for miscible reactive multiphase multicomponent flow in porous media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a numerical framework for efficiently simulating partially miscible two-phase flow with multicomponent reactive transport in porous media using the global implicit approach. The mathematical model consists of coupled and nonlinear partial differential equations, ordinary differential equations, and algebraic equations. Our approach is based on a model-preserving reformulation using the reduction scheme of Kräutle and Knabner (Water Resour. Res. 43(3), 2007), Hoffmann et al. (Comput. Geosci. 16(4):1081–1099, 2012) to transform the system. Moreover, a nonlinear, implicitly defined resolution function to reduce its size is employed. By choosing persistent primary variables and using a complementarity approach, mineral reactions and the local appearance and disappearance of the gas phase can be handled without a discontinuous switch of primary variables. In each time step of the Euler-implicit time stepping scheme, the discrete nonlinear systems are solved using the Semismooth Newton method for linearization using the global implicit approach. Thus, we obtain an efficient, robust, and stable simulation method allowing for large time steps and avoiding the potential drawbacks of splitting approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadpour, A., Panfilov, M.: Method of negative saturations for modeling two-phase compositional flow with oversaturated zones. Transp. Porous Media 79(2), 197–214 (2009)

    Article  Google Scholar 

  2. Ahusborde, E., Kern, M., Vostrikov, V.: Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO2. ESAIM: Proc. Surv. 50, 21–39 (2015)

    Article  Google Scholar 

  3. Amir, L., Kern, M.: A global method for coupling transport with chemistry in heterogeneous porous media. Comput. Geosci. 14(3), 465–481 (2010)

    Article  Google Scholar 

  4. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  5. Ben Gharbia, I., Jaffré, J.: Gas phase appearance and disappearance as a problem with complementarity constraints. Math. Comput. Simul. 99, 28–36 (2014)

    Article  Google Scholar 

  6. Bethke, C.: Geochemical Reaction Modeling: Concepts and applications. Oxford University Press, New York (1996)

    Google Scholar 

  7. Bourgeat, A., Granet, S., Smaï, F.: Compositional two-phase flow in saturated-unsaturated porous media: benchmarks for phase appearance/disappearance. In: Bastian, P., Kraus, J., Scheichl, R., Wheeler, M. (eds.) Simulation of Flow in Porous Media, volume 12 of Radon Series on Computational and Applied Mathematics, pp. 81–106. Walter de Gruyter (2013)

  8. Bourgeat, A., Jurak, M., Smaï, F.: On persistent primary variables for numerical modeling of gas migration in a nuclear waste repository. Comput. Geosci. 17(2), 287–305 (2013)

    Article  Google Scholar 

  9. Brunner, F., Frank, F., Knabner, P.: FV upwind stabilization of FE discretizations for advection–diffusion problems. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds.) Finite Volumes for Complex Applications VII–Methods and Theoretical Aspects, volume 77 of Springer Proceedings in Mathematics & Statistics, pp. 177–185. Springer International Publishing (2014)

  10. Buchholzer, H., Kanzow, C., Knabner, P., Kräutle, S.: The semismooth newton method for the solution of reactive transport problems including mineral precipitation-dissolution reactions. Comput. Optim. Appl. 50(2), 193–221 (2010)

    Article  Google Scholar 

  11. Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S., de Dieuleveult, C., Erhel, J., van der Lee, J., Lagneau, V., Mayer, K.U., MacQuarrie, K.T.B.: Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems—the MoMaS benchmark case. Comput. Geosci. 14(3), 483–502 (2010)

    Article  Google Scholar 

  12. Carrayrou, J., Kern, M., Knabner, P.: Reactive transport benchmark of MoMaS. Comput. Geosci. 14 (3), 385–392 (2010)

    Article  Google Scholar 

  13. Class, H., Helmig, R., Bastian, P.: Numerical simulation of nonisothermal multiphase multicomponent processes in porous media.: 1. An efficient solution technique. Adv. Water Resour. 25(5), 533–550 (2002)

    Article  Google Scholar 

  14. de Cuveland, R.: Two-Phase Compositional Flow Simulation with Persistent Variables. PhD thesis, Universität Heidelberg (2015)

  15. de Dieuleveult, C., Erhel, J.: A global approach to reactive transport: application to the MoMaS benchmark. Comput. Geosci. 14(3), 451–464 (2010)

    Article  Google Scholar 

  16. de Dieuleveult, C., Erhel, J., Kern, M.: A global strategy for solving reactive transport equations. J. Comput. Phys. 228(17), 6395–6410 (2009)

    Article  Google Scholar 

  17. de Luca, T., Facchinei, F., Kanzow, C.: A Theoretical and numerical comparison of some semismooth algorithms for complementarity problems. Comput. Optim. Appl. 16(2), 173–205 (2000)

    Article  Google Scholar 

  18. Duan, Z., Møller, N., Weare, J.H.: An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000C and 0 to 8000 bar. Geochim. Cosmochim. Acta 56(7), 2605–2617 (1992)

    Article  Google Scholar 

  19. Eck, C., Garcke, H., Knabner, P.: Mathematical Modeling. Springer International Publishing, Berlin (2017)

    Book  Google Scholar 

  20. Fan, Y., Durlofsky, L.J., Tchelepi, H.: A fully-coupled flow-reactive-transport formulation based on element conservation, with application to CO2 storage simulations. Adv. Water Resour. 42, 47–61 (2012)

    Article  Google Scholar 

  21. Fenghour, A., Wakeham, W.A., Vesovic, V.: The viscosity of carbon dioxide. J. Phys. Chem. Ref. Data 27(1), 31–44 (1998)

    Article  Google Scholar 

  22. Forsyth, P.A., Simpson, R.B.: A two-phase, two-component model for natural convection in a porous medium. Int. J. Numer. Methods Fluids 12(7), 655–682 (1991)

    Article  Google Scholar 

  23. García, J. E.: Density of Aqueous Solutions of CO2. Lawrence Berkeley National Laboratory (2001)

  24. Hammond, G., Lichtner, P., Lu, C.: Subsurface multiphase flow and multicomponent reactive transport modeling using high-performance computing. J. Phys. Conf. Ser. 78(1), 012025 (2007)

    Article  Google Scholar 

  25. Hao, Y., Sun, Y., Nitao, J.J.: Overview of NUFT: a versatile numerical model for simulating flow and reactive transport in porous media. In: Zhang, F., Yeh, G.-T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 212–239. Bentham Science Publishers (2012)

  26. Hoffmann, J.: Reactive Transport and Mineral Dissolution/Precipitation in Porous Media, Efficient Solution Algorithms, Benchmark Computations and Existence of Global Solutions. PhD Thesis, friedrich-alexander-universität erlangen-nürnberg (2010)

  27. Hoffmann, J., Kräutle, S., Knabner, P.: A parallel global–implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem. Comput. Geosci. 14(3), 421–433 (2010)

    Article  Google Scholar 

  28. Hoffmann, J., Kräutle, S., Knabner, P.: A general reduction scheme for reactive transport in porous media. Comput. Geosci. 16(4), 1081–1099 (2012)

    Article  Google Scholar 

  29. Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York (2003)

    Google Scholar 

  30. Kräutle, S.: General Multi-Species Reactive Transport Problems in Porous Media: Efficient Numerical Approaches and Existence of Global Solutions. Habilitation thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2008)

  31. Kräutle, S.: The semismooth Newton method for multicomponent reactive transport with minerals. Adv. Water Resour. 34(1), 137–151 (2011)

    Article  Google Scholar 

  32. Kräutle, S., Knabner, P.: A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Water Resour. Res. 41(9), W09414 (2005)

  33. Kräutle, S., Knabner, P.: A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions. Water Resour. Res. 43(3), W03429 (2007)

  34. Lauser, A., Hager, C., Helmig, R., Wohlmuth, B.: A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Resour. 34(8), 957–966 (2011)

    Article  Google Scholar 

  35. Marchand, E., Müller, T., Knabner, P.: Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media Part I: formulation and properties of the mathematical model. Comput. Geosci. 17(2), 431–442 (2013)

    Article  Google Scholar 

  36. Millington, R.J., Quirk, J.P.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)

    Article  Google Scholar 

  37. Neumann, R., Bastian, P., Ippisch, O.: Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase. Comput. Geosci. 17(1), 139–149 (2013)

    Article  Google Scholar 

  38. Qi, L., Sun, J.: A nonsmooth version of newton’s method. Math. Program. 58(3), 353–367 (1993)

    Article  Google Scholar 

  39. Saaltink, M.W., Carrera, J., Ayora, C.: A comparison of two approaches for reactive transport modelling. J. Geochem. Explor. 69–70, 97–101 (2000)

    Article  Google Scholar 

  40. Saaltink, M.W., Vilarrasa, V., De Gaspari, F., Silva, O., Carrera, J., Rötting, T.S.: A method for incorporating equilibrium chemical reactions into multiphase flow models for CO2 storage, vol. 62 (2013)

  41. Spycher, N., Pruess, K.: CO2-H2O mixtures in the geological sequestration of CO2. II partitioning in chloride brines at 12–100C and up to 600 bar. Geochim. Cosmochim. Acta 69(13), 3309–3320 (2005)

    Article  Google Scholar 

  42. Valocchi, A.J., Malmstead, M.: Accuracy of operator splitting for advection-dispersion-reaction problems. Water Resour. Res. 28(5), 1471–1476 (1992)

    Article  Google Scholar 

  43. Xu, T., Sonnenthal, E., Spycher, N., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT: a simulation program for subsurface reactive chemical transport under non-isothermal multiphase flow conditions. In: Zhang, F., Yeh, G.-T., Parker, J.C. (eds.) Groundwater Reactive Transport Models, pp. 74–95. Bentham Science Publishers (2012)

  44. Yeh, G.-T., Tripathi, V.S.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25(1), 93–108 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Brunner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunner, F., Knabner, P. A global implicit solver for miscible reactive multiphase multicomponent flow in porous media. Comput Geosci 23, 127–148 (2019). https://doi.org/10.1007/s10596-018-9788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9788-7

Keywords

Navigation