Skip to main content

Advertisement

Log in

An evolutionary system for exploitation of fractured geothermal reservoirs

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this work, we present a novel methodology to integrate one of the most advanced technique for modeling fractured media for underground systems with a semantics-based genetic programming technique. The objective of the study is to develop a global framework to forecast the temperature of fractured reservoirs. The numerical method used to solve the physical equations is able to handle different fracture distributions without changing the background computational grid, i.e. the mesh of the rock matrix, as well as letting geometrically uncoupled the one co-dimensional fracture meshes. In the context of temperature forecasting, the use of a recently defined variant of genetic programming is taken into account for finding (quasi-)perfect solutions with high probability and for generating models able to produce near optimal predictions also on unseen data. The proposed computational intelligence technique integrates, in a recently developed version of genetic programming that uses semantic genetic operators, a “greedy” crossover and a self tuning algorithm. Experimental results confirm the suitability of the proposed method in predicting the correct temperature distribution in probes inside the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alboin, C., Jaffré, J., Roberts, J.E., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. In: Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages 13–24. Amer. Math. Soc., Providence, RI (2002)

  2. Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. M2AN Math Model Numer Anal 43(2), 239–275 (2009)

    Article  Google Scholar 

  3. Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of the first european conference on artificial life, pages 263–271. MIT Press (1992)

  4. Bäck, T.: Optimal mutation rates in genetic search. In: Proceedings of the 5th international conference on genetic algorithms, pages 2–8, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc

  5. Bear, J.: Dynamics of fluids in porous media. American Elsevier (1972)

  6. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic genetic programming. Genet Program Evolvable Mach 16(1), 73–81 (2015)

    Article  Google Scholar 

  7. Castelli, M.auro., Trujillo, L.eonardo., Vanneschi, L.eonardo.: Energy consumption forecasting using semantic-based genetic programming with local search optimizer. Comput Intell Neurosci 2015, 1–8 (2015)

    Article  Google Scholar 

  8. Castelli, M., Trujillo, L., Vanneschi, L., Silva, S, Z-Flores, E., Legrand, P.: Geometric semantic genetic programming with local search. In: Proceedings of the 2015 on genetic and evolutionary computation conference, GECCO ’15, pages 999–1006, New York, NY, USA, 2015. ACM

  9. Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst Appl 40(17), 6856–6862 (2013)

    Article  Google Scholar 

  10. Castelli, M., Vanneschi, L., Silva, S.: Prediction of the Unified Parkinson’s Disease Rating Scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Syst Appl 41(10), 4608–4616 (2014)

    Article  Google Scholar 

  11. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other Kernel-based learning methods. Cambridge University Press (2000)

  12. D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. math model numerical analys 46(02), 465–489 (2012)

    Article  Google Scholar 

  13. Davis, L.: Adapting operator probabilities in genetic algorithms. In: Proceedings of the third international conference on genetic algorithms, pages 61–69, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc

  14. Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures. ESAIM: Mathematical Modelling and Numerical Analysis 48(7), 1089–1116 (2014)

    Article  Google Scholar 

  15. Fumagalli, A., Scotti, A.: An efficient XFEM approximation of Darcy flow in arbitrarly fractured porous media. Oil and Gas Sciences and Technologies - Revue d’IFP Energies Nouvelles 69(4), 555–564 (April 2014)

  16. Giacobini, M., Tomassini, M., Vanneschi, L.: Limiting the number of fitness cases in genetic programming using statistics. In: Guervós, JJM, Adamidis, P, Beyer, H-G , Schwefel, H-P, Fernández-Villacanas, J-L (eds.) Parallel Problem Solving from Nature PPSN VII, volume 2439 of Lecture Notes in Computer Science, pp 371–380. Springer (2002)

  17. Hansbo, A., method, P.H.: An unfitted finite element based on Nitsche’s method, for elliptic interface problems. Comput Methods Appl Mech Engrg 191(47-48), 5537–5552 (2002)

    Article  Google Scholar 

  18. Hansbo, P.: Nitsche’s method for interface problems in computational mechanics. GAMM-Mitt 28(2), 183–206 (2005)

    Article  Google Scholar 

  19. Simon, O.H.: Neural networks: a comprehensive foundation. Prentice Hall (1999)

  20. Jaffré, J., Martin, V., Roberts, J.E.: Generalized cell-centered finite volume methods for flow in porous media with faults. In: Finite volumes for complex applications, III (Porquerolles, 2002), pages 343–350. Hermes Sci. Publ., Paris (2002)

  21. John, R.K.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge, USA (1992)

    Google Scholar 

  22. John, R.: Human-competitive results produced by genetic programming. Genet Program Evolvable Mach 11 (3-4), 251–284 (2010)

    Article  Google Scholar 

  23. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J Sci Comput 26(5), 1667–1691 (2005)

    Article  Google Scholar 

  24. Moraglio, A., Krawiec, K., Johnson, C.: Geometric semantic genetic programming. In: Coello, CAC, Cutello, V, Deb, K, Forrest, S, Nicosia, G, Pavone, M (eds.) Parallel Problem Solving from Nature - PPSN XII, volume 7491 of Lecture Notes in Computer Science, pp 21–31. Springer (2012)

  25. Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for second order elliptic problems. Lect Notes Math 606, 292–315 (1977)

    Article  Google Scholar 

  26. Smith, J., Fogarty, T.C.: Self adaptation of mutation rates in a steady state genetic algorithm. In: Proceedings of IEEE international conference on evolutionary computation, 1996 pages 318–323 (1996)

  27. Stadler, P.: Towards a theory of landscapes. In: Complex Systems and Binary Networks, volume 461-461 of Lecture Notes in Physics, pages 78–163. Springer Berlin Heidelberg (1995)

  28. Stephens, C.R., García Olmedo, I., Mora Vargas, J., Waelbroeck, H.: Self-adaptation in evolving systems. Artif Life 4(2), 183–201 (1998)

    Article  Google Scholar 

  29. Vanneschi, L., Castelli, M., Manzoni, L., Silva, S.: A new implementation of geometric semantic GP and its application to problems in pharmacokinetics. In: Krawiec, K, Moraglio, A, Hu, T, Etaner-Uyar, S, Hu, B (eds.) Genetic Programming, volume 7831 of Lecture Notes in Computer Science, pp 205–216. Springer (2013)

  30. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet Program Evolvable Mach 15(2), 195–214 (2014)

    Article  Google Scholar 

  31. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. In: Riolo, RL, Moore, JH, Kotanchek, ME (eds.) Genetic Programming Theory and Practice XI [GPTP, 2013, University of Michigan, Ann Arbor, May 9-11, 2013]., pages 191–209. Springer (2013)

  32. Weka: Machine Learning Project. Weka. http://www.cs.waikato.ac.nz/~ml/weka (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Fumagalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelli, M., Fumagalli, A. An evolutionary system for exploitation of fractured geothermal reservoirs. Comput Geosci 20, 385–396 (2016). https://doi.org/10.1007/s10596-015-9552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9552-1

Keywords

Navigation