Skip to main content
Log in

An empirical theory for gravitationally unstable flow in porous media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we follow a similar procedure as proposed by Koval (SPE J 3(2):145–154, 1963) to analytically model CO2 transfer between the overriding carbon dioxide layer and the brine layer below it. We show that a very thin diffusive layer on top separates the interface from a gravitationally unstable convective flow layer below it. Flow in the gravitationally unstable layer is described by the theory of Koval, a theory that is widely used and which describes miscible displacement as a pseudo two-phase flow problem. The pseudo two-phase flow problem provides the average concentration of CO2 in the brine as a function of distance. We find that downstream of the diffusive layer, the solution of the convective part of the model, is a rarefaction solution that starts at the saturation corresponding to the highest value of the fractional-flow function. The model uses two free parameters, viz., a dilution factor and a gravity fingering index. A comparison of the Koval model with the horizontally averaged concentrations obtained from 2-D numerical simulations provides a correlation for the two parameters with the Rayleigh number. The obtained scaling relations can be used in numerical simulators to account for the density-driven natural convection, which cannot be currently captured because the grid cells are typically orders of magnitude larger than the wavelength of the initial fingers. The method can be applied both for storage of greenhouse gases in aquifers and for EOR processes using carbon dioxide or other solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bando, S., Takemura, F., Nishio, M., Hihara, E., Makoto Akai, M.: Viscosity of aqueous NaCl solutions with dissolved CO2 at (30 to 60) °C and (10 to 20) MPa. J. Chem. Eng. Data 49, 1328–1332 (2004)

    Article  Google Scholar 

  2. Bedrikovetsky, P., De Deus, J., Eurico Altoé, J.: Secondary migration of oil: analytical model. SPE 69411. In: 2001 SPE Latin American and Caribbean Petroleum Engineering Conference. Buenos Aires, Argentina, SPE (2001)

  3. Blackwell, R.J., Rayne, I.R., Terry, W.M.: Factors influencing the efficiency of miscible displacement. Petrol. Trans., AIME 217, 1–4 (1959)

    Google Scholar 

  4. Booth, R.J.S.: On the growth of the mixing zone in miscible viscous fingering. J. Fluid Mech. 655, 527–539 (2010)

    Article  Google Scholar 

  5. Booth, R.J.S.: Miscible flow through porous media. PhD dissertation, University of Oxford (2008)

  6. Dake, L.P.: Fundamentals of Reservoir Engineering, p. 365. Elsevier, New York (1978)

    Google Scholar 

  7. Dake, L.P.: The Practice of Reservoir Engineering, pp. 370–371. Elsevier, New York (1994)

    Google Scholar 

  8. Dougherty, E.L.: Mathematical model of an unstable miscible displacement. SPE J. 3, 155–163 (1963), SPE 509

    Google Scholar 

  9. Enick, R.M., Klara, S.M.: CO2 solubility in water and brine under reservoir conditions. Chem. Eng. Commun. 90(1), 23–33 (1990)

    Article  Google Scholar 

  10. Ennis-King, J., Paterson, L.: Role of convective mixing in the long-term storage of carbon dioxide in deep saline aquifers. SPE J. 10(4), 349 (2005)

    Google Scholar 

  11. Farajzadeh, R., Salimi, H., Zitha, P.L.J., Bruining, J.: Numerical simulation of density-driven natural convection in porous media with application for CO2 injection projects. Int. J. Heat Mass Transfer 50(25–26), 5054–5064 (2007a)

    Article  Google Scholar 

  12. Farajzadeh, R., Barati, A., Delil, H.A., Bruining, J., Zitha, P.L.J.: Enhanced mass transfer of CO2 into water and surfactant solutions. Pet. Sci. Technol. 25(13), 1493–1511 (2007b)

    Article  Google Scholar 

  13. Farajzadeh, R., Farshbaf Zinati, F., Zitha, P.L.J., Bruining, J.: Density-driven natural convection in dual layered and anisotropic porous media with application for CO2 injection projects. A40 ECMOR XI. 8–11 September 2008, 11th European Conference on the Mathematics of Oil Recovery. Bergen, Norway (2008)

  14. Farajzadeh, R., Bruining, J., Zitha, P.L.J.: Enhanced mass transfer of CO2 into water: experiment and modeling. Ind. Eng. Chem. Res. 48(10), 4542–4455 (2009)

    Article  Google Scholar 

  15. Farajzadeh, R., Meulenbroek, B., Bruining, J.: An analytical method for predicting the performance of gravitationally unstable flow in porous media. SPE 143420. Presented at SPE EUROPEC/EAGE Annual Conference and Exhibition, 23–26 May 2011a, Vienna, Austria (2011a)

  16. Farajzadeh, R., Ranganathan, P., Zitha, P.L.J., Bruining, J.: The effect of heterogeneity on the character of density-driven natural convection of CO2 overlying a brine layer. Adv. Water Resour. 34(4), 327–339 (2011b)

    Article  Google Scholar 

  17. Fayers, F.J.: An approximate model with physically interpretable parameters for representing miscible viscous fingering. SPE Reserv. Eng. 3, 551–558 (1988)

    Google Scholar 

  18. Fayers, F.J., Newley, T.M.J.: Detailed validation of an empirical model for viscous fingering with gravity effects. SPE Reserv. Eng. 3, 542–550 (1988)

    Google Scholar 

  19. Fayers, F.J., Blunt, M.J., Christie, M.A.: Comparisons of empirical viscous-fingering models and their calibration for heterogeneous problems. SPE Reserv. Eng. 7(2), 195–203 (1992)

    Google Scholar 

  20. Gelhar, L.W.: Stochastic Subsurface Hydrology. 390 pp, ISBN 0138467676. Prentice Hall, Englewood Cliffs (1993)

  21. Gmelin L.: Gmelin Handbuch der anorganischen Chemie, 8. Auflage. Kohlenstoff, Teil C3, Verbindungen, pp. 64–75 (1973)

  22. Guo, T., Neale, G.H.: Effects of buoyancy forces on miscible liquid–liquid displacement processes in a porous medium. Powder Technol. 86, 265–273 (1996)

    Article  Google Scholar 

  23. Hassanzadeh, H., Pooladi-Darvish, M., Keith, D.: Scaling behavior of convective mixing, with application to CO2 geological storage. AIChE J. 53(6), 1121–1131 (2007)

    Article  Google Scholar 

  24. Hearn, C.L.: Simulation of stratified waterflooding by pseudo relative permeability curves. JPT 805–13 (1971)

  25. Hebach, A., Oberhof, A., Dahmen, N.: Density of water + carbon dioxide at elevated pressures: measurements and correlation. J. Chem. Eng. Data 49(5), 950–953 (2004)

    Article  Google Scholar 

  26. Hill, S.: Chanelling in packed columns. Chem. Eng. Sci. 1, 247–253 (1952)

    Article  Google Scholar 

  27. Khosrokhavar, R., Elsinga, G., Mojaddam, A., Farajzadeh, R., Bruining, J.: Visualization of natural convection flow of (sub-) and (super-) critical CO2 in aqueous and oleic systems by applying Schlieren method. 73rd EAGE Conference and Exhibition Incorporating SPE EUROPEC 2011, SPE 143264 (2011)

  28. Koval, E.J.: A method for predicting the performance of unstable miscible displacement in heterogeneous media. SPE J. 3(2), 145–154 (1963)

    Google Scholar 

  29. Kumagai, A., Yokoyama, C.: Viscosities of aqueous NaCl solutions containing CO2 at high pressures. J. Chem. Eng. Data 44, 227–229 (1999)

    Article  Google Scholar 

  30. Lake, L.W.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  31. Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. Fluid Mechanics. Series in Advanced Physics, vol. 6. Addison-Wesley, Reading (1959)

    Google Scholar 

  32. Lu, C., Lichtner, P.C.: High resolution numerical investigation on the effect of convective instability on long-term CO2 storage in saline aquifers. J. Phys.: Conf. Ser. 78, 12042 (2007)

    Article  Google Scholar 

  33. Neufeld, J.A., Hesse, M.A., Riaz, A., Hallworth, M.A., Tchelepi, H.A., Huppert, H.E.: Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37(23) (2010) art. no. L22404

  34. Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K.: High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33(5), 443–455 (2010)

    Article  Google Scholar 

  35. Peaceman, D.W., Rachford Jr., H.H.: Numerical calculation of multi-dimensional miscible displacement. Soc. Pet. Eng. J. 2, 327–339 (1962)

    Google Scholar 

  36. Perrine, R. L. : The development of stability theory for miscible liquid–liquid displacement. Soc. Pet. Eng. J. 1(1), 17–25 (1961)

    Google Scholar 

  37. Ranganathan, P., Farajzadeh, R., Bruining, J., Zitha, P.L.J.: Numerical simulation of natural convection in heterogeneous porous media for CO2 geological storage. Transp. Porous Med. 95, 25–54 (2012)

    Article  Google Scholar 

  38. Riaz, A., Tchelepi, H.A.: Dynamics of vertical displacement in porous media associated with CO2 sequestration. Proceedings of the SPE Annual Technical Conference and Exhibition 6, pp. 4298–309 (2006)

  39. Riaz, A., Hesse, M., Tchelepi, A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous medium. J. Fluid Mech. 548, 87–111 (2006b)

    Article  Google Scholar 

  40. Siddiqui, F.I., Lake, L.W.: A comprehensive dynamic theory of hydrocarbon migration and trapping. SPE 38682. In: 1997 72nd Annual Technical Conference and Exhibition, San Antonio, TX, SPE (1997)

  41. Silin, D., Patzek, T., Benson, S.M.: A model of buoyancy-driven two-phase countercurrent fluid flow. Transp. Porous Med. 76, 449–469 (2009)

    Article  Google Scholar 

  42. Sharp, D.H.: An overview of Rayleigh–Taylor instability. Physica 12D, 3–18 (1984)

    Google Scholar 

  43. Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond., A 201, 192–196 (1950)

    Article  Google Scholar 

  44. Todd, M.R., Longstaff, W.J.: The development, testing, and application of a numerical simulator for predicting miscible flood performance. J. Pet. Technol. 24, 874–882 (1972)

    Google Scholar 

  45. Van Dyke, M.: Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford (1975)

    Google Scholar 

  46. Verhulst, F.: Methods and Applications of Singular Perturbations. Springer, New York (2000)

    Google Scholar 

  47. Waggoner, J.R., Zapata, V.J., Lake, L.W.: Viscous mixing in unstable miscible displacements. SPE 22235-MS (1991)

  48. Waggoner, J.R., Castillo, J.L., Lake, L.W.: Simulation of EOR processes in stochastically generated permeable media. SPE Form. Eval. 7(2), 173–180 (1992)

    Google Scholar 

  49. Willhite, P.G.: Waterflooding, pp. 151–153. Society of Petroleum Engineers Inc., Richardson (1986), SPE textbook series

  50. Wooding, R.A.: Growth of fingers at an unstable diffusing interface in a porous medium or Hele–Shaw cell. J. Fluid Mech. 39, 477–495 (1969)

    Article  Google Scholar 

  51. Yang, C., Gu, Y.: Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures. Ind. Eng. Chem. Res. 45, 2430–2436 (2006)

    Article  Google Scholar 

  52. Yortsos, Y.C., Salin, D.: On the selection principle for viscous fingering in porous media. J. Fluid Mech. 557, 225–236 (2006)

    Article  Google Scholar 

  53. Zimmerman, W.B., Homsy, G.M.: Viscous fingering in miscible displacements: Unification of effects of viscosity contrast, anisotropic dispersion, and velocity dependence of dispersion on nonlinear finger propagation. Phys. Fluid A 4, 2348–2359 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Farajzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farajzadeh, R., Meulenbroek, B., Daniel, D. et al. An empirical theory for gravitationally unstable flow in porous media. Comput Geosci 17, 515–527 (2013). https://doi.org/10.1007/s10596-012-9336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9336-9

Keywords

Navigation