Skip to main content
Log in

Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a model-driven uncertainty quantification methodology based on sparse grid sampling techniques in the context of a generalized polynomial chaos expansion (GPCE) approximation of a basin-scale geochemical evolution scenario. The approach is illustrated through a one-dimensional example involving the process of quartz cementation in sandstones and the resulting effects on the dynamics of the vertical distribution of porosity, pressure, and temperature. The proposed theoretical framework and computational tools allow performing an efficient and accurate global sensitivity analysis (GSA) of the system states (i.e., porosity, temperature, pressure, and fluxes) in the presence of uncertain key mechanical and geochemical model parameters as well as boundary conditions. GSA is grounded on the use of the variance-based Sobol indices. These allow discriminating the relative weights of uncertain quantities on the global model variance and can be computed through the GPCE of the model response. Evaluation of the GPCE of the model response is performed through the implementation of a sparse grid approximation technique in the space of the selected uncertain quantities. GPCE is then be employed as a surrogate model of the system states to quantify uncertainty propagation through the model in terms of the probability distribution (and its statistical moments) of target system states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abercrombie, H.J., Hutcheon, I.E., Bloch, J.D., de Caritat, P.: Silica activity and the smectite–illite reaction. Geology 22, 539–542 (1994)

    Article  Google Scholar 

  2. Archer, G.E.B., Saltelli, A., Sobol, I.M.: Sensitivity measures, ANOVA-like techniques and the use of bootstrap. J. Stat. Comput. Simul. 58(2), 99–120 (1997)

    Article  Google Scholar 

  3. Babuška, I., Chatzipantelidis, P.: On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 191(37–38), 4093–4122 (2002)

    Article  Google Scholar 

  4. Bäck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Hesthaven, J., Ronquist, E. (eds.) Spectral and High Order Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol. 76, pp. 43–62. Springer, New York (2011)

    Chapter  Google Scholar 

  5. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12(4), 273–288 (2000)

    Article  Google Scholar 

  6. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods (2011). To appear on Mathematical Models & Methods in Applied Sciences. Also available as MOX-Report 23-2011

  7. Bjorkum, P.A.: How important is pressure in causing dissolution of quartz in sandstones? J. Sediment. Res. 66, 147–154 (1996)

    Google Scholar 

  8. Bjorlykke, K.: Fluid-flow processes and diadenesis in sedimentary basins. Spec. Publ. Geol. Soc. Lond. 78, 127–140 (1994)

    Article  Google Scholar 

  9. Bjorlykke, K., Hoeg, K.: Effects of burial diagenesis on stresses, compaction and fluid flow in sedimentary basins. Mar. Pet. Geol. 14, 267–276 (1997)

    Article  Google Scholar 

  10. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

  11. Buller, A.T., Bjorkum, P.A., Nadeau, P., Walderhaug, O.: Distribution of hydrocarbons in sedimentary basins. Statoil ASA, Res. Techn. Memoir 7, 1–15 (2005)

    Google Scholar 

  12. Bungartz, H., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  Google Scholar 

  13. Chen, Z., Ewing, R.E., Lu, H., Lyons, S.L., Maliassov, S., Ray, M.B., Sun, T.: Integrated two-dimensional modeling of fluid flow and compaction in a sedimentary basin. Comput. Geosci. 6, 545–564 (2002)

    Article  Google Scholar 

  14. Constantine, P., Eldred, M., Phipps, E.: Sparse pseudospectral approximation method. ArXiv repository item number: arXiv:1109.2936v1 (2011)

  15. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  Google Scholar 

  16. Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T., Ackerer, P., Guadagnini, A.: Use of global sensitivity analysis and polynomial chaos expansion for interpretation of non-reactive transport experiments in laboratory-scale porous media. Water Resour. Res. 47(2), W02521 (2011)

    Article  Google Scholar 

  17. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)

    Google Scholar 

  18. Gerritsma, M., van der Steen, J.B., Vos, P., Karniadakis, G.: Time-dependent generalized polynomial chaos. J. Comput. Phys. 229(22), 8333–8363 (2010)

    Article  Google Scholar 

  19. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    Article  Google Scholar 

  20. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  Google Scholar 

  21. Giles, M., Indrelid, S.L., Beynon, G.V., Amthor, J.: The origin of large-scale quartz cementation: evidence from large data sets and coupled heat-fluid mass transport modelling. Spec. Publ. Int. Assoc. Sedimentol. 29, 21–38 (2000)

    Google Scholar 

  22. Hadipriomo, F.: Fuzzy sets in probabilistic structural mechanics. In: Sundrarajan, C. (ed.) Probabilistic Structural Mechanic Handbook: Theory and Industrial Applications, pp. 280–316. Chapman and Hall, London (1995)

    Chapter  Google Scholar 

  23. Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Wiley, Chichester (1992)

    Google Scholar 

  24. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  25. Land, L.S., Dutton, S.P.: Cementation of a Pennsylvanian deltaic sandstone; isotopic data. J. Sediment. Res. 48, 1167–1176 (1978)

    Google Scholar 

  26. Lander, R.H., Walderhaug, O.: Predicting porosity through simulating sandstone compaction and quartz cementation. AAPG Bull. 83(3), 433–449 (1999)

    Google Scholar 

  27. Le Maître, O.P., Knio, O.M.: Spectral methods for uncertainty quantification. In: Scientific Computation. Springer, New York (2010)

    Google Scholar 

  28. Mello, U.T., Rodrigues, J.R.P., Rossa, A.L.: A control-volume finite-element method for three-dimensional multiphase basin modeling. Mar. Pet. Geol. 26, 504–518 (2009)

    Article  Google Scholar 

  29. Milliken, K.L.: Late diagenesis and mass transfer in sandstone-shale sequences. Treatis Geochem. 7, 115–158 (2004)

    Google Scholar 

  30. Mullis, A.M.: The role of silica precipitation kinetics in determining the rate of quartz pressure solution. J. Geophys. Res. 26, 69–112 (1991)

    Google Scholar 

  31. Nadeau, P.H.: Lessons learned from the golden zone concept for understanding overpressure development, and drilling safety in energy exploration. Working paper, Deepwater Horizon Study Group (2011)

  32. Oelkers, E.H., Bjorkum, P.A., Murphy, W.M.: The mechanism of porosity reduction, stylolite development and quartz cementation in North Sea sandstones. In: Kharaka, Y.K., Maest, A.S. (eds.) Water Rock Interaction, pp. 1183–1186. Balkema, Rotterdam (1992)

    Google Scholar 

  33. Oelkers, E.H., Bjorkum, P.A., Murphy, W.M.: A petrographic and computational investigation of quartz cementation and porosity reduction in North Sea sandstones. Am. J. Sci. 296, 420–452 (1996)

    Article  Google Scholar 

  34. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. In: Texts in Applied Mathematics, vol. 37, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  35. Ramm, M.: Porosity-depth trends in reservoir sandstones: theoretical model related to Jurassic sandstones offshore Norway. Mar. Pet. Geol. 9, 553–567 (1992)

    Article  Google Scholar 

  36. Sageman, B.B., Lyons, T.W.: Geochemistry of fine-grained sediments and sedimentary rocks. Treatise Geochem. 7, 115–158 (2004)

    Google Scholar 

  37. Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F.: Sensitivity analysis practices: strategies for model based inference. Reliab. Eng. Syst. Saf. 91, 1109–1125 (2006)

    Article  Google Scholar 

  38. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  39. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  40. Sobol’ I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simulat. 55(1–3), 271–280 (1991)

    Google Scholar 

  41. Stephenson, L.P., Plumley, W.J., Palciauskas, V.V.: A model for sandstone compaction by grain interpenetration. J. Sediment. Petrol. 62, 11–22 (1992)

    Google Scholar 

  42. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008)

    Article  Google Scholar 

  43. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  Google Scholar 

  44. Walderhaug, O.: Precipitation rates for quartz cement in sandstones determined by fluid-inclusion microthermometry and temperature-history modelling. J. Sediment. Res. A64, 324–333 (1994)

    Google Scholar 

  45. Walderhaug, O.: Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs. AAPG Bull. 80, 731–745 (1996)

    Google Scholar 

  46. Walderhaug, O., Lander, R.H., Bjorkum, P.A., Oelkers, E.H., Bjolykke, K., Nadeau, P.H.: Modelling quartz cementation and porosity in reservoir sandstones: examples from Norwegian continental shelf. Spec. Publ. Int. Assoc. Sediment. 29, 39–49 (2000)

    Google Scholar 

  47. Wangen, M.: Physical Principles of Sedimentary Basin Analysis. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  48. Weyl, P.K.: Pressure solution and the force of cristallization—a phenomenological theory. J. Geophys. Res. 64, 2001–2025 (1959)

    Article  Google Scholar 

  49. Worden, R., Morad, S.: Quartz cementation in oil field sandstone: a review of the key controversies. Spec. Publ. Int. Assoc. Sediment. 29, 1–20 (2000)

    Google Scholar 

  50. Xiu, D., Karniadakis, G.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Porta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Formaggia, L., Guadagnini, A., Imperiali, I. et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model. Comput Geosci 17, 25–42 (2013). https://doi.org/10.1007/s10596-012-9311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9311-5

Keywords

Navigation