Skip to main content
Log in

Pathline tracing on fully unstructured control-volume grids

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The trend toward unstructured grids in subsurface flow modeling has prompted interest in the issue of streamline or pathline tracing on unstructured grids. Streamline tracing on unstructured grids is problematic because a continuous velocity field is required for the calculation, while numerical solutions to the groundwater flow equations provide velocity in discretized form only. A method for calculating flow streamlines or pathlines from a finite-volume flow solution is presented. The method uses an unconstrained least squares method on interior cells and a constrained least squares method on boundary cells to approximate cell-centered velocities, which can then be continuously interpolated to any point in the domain of interest. Two-dimensional tests demonstrate that the method correctly reproduces uniform and corner-to-corner flow on fully unstructured grids. In three dimensions using regular hexahedral grids, the method agrees well with established semianalytical methods. Tests also demonstrate that the method produces physically realistic results on fully unstructured three-dimensional grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amemiya, T.: Advanced Econometrics. Harvard University Press, Cambridge (1985)

    Google Scholar 

  2. Crane, M.J., Blunt, M.J.: Streamline-based simulation of solute transport. Water Resour. Res. 35(10), 3061–3078 (1999). doi:10.1029/1999WR900145

    Article  Google Scholar 

  3. Cordes C., Kinzelbach, W.: Continous groundwater velocity fields and path lines in linear, bilinear, and trilinear finite elements. Water Resour. Res. 28(11), 2903–2911 (1992)

    Article  Google Scholar 

  4. Cvetkovic V., Dagan, G.: Transport of kinetically sorbing solute by steady random velocity in heterogeneious porous formations. J. Fluid Mech. 265, 189–215 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dagan G., Cvetkovic V.: Reactive transport and immiscible flow in geological media. I. General theory. Proc. R. Soc. Lond. A 452, 285–301 (1996)

    Article  MATH  Google Scholar 

  6. Finkel, M, Liedl, R., Teutsch, G.: Modelling surfactant-enhanced remediation of polycyclic aromatic hydrocarbons. Environ. Model. Softw. 14(2–3), 203–211 (1999)

    Google Scholar 

  7. Hægland, H., Dahle, H.K., Eigestad, G.T., Lie, K.-A., Aavatsmark, I.: Improved streamlines and time-of-flight for streamline simulation on irregular grids. Adv. Water Resour. 30(4), 1027–1045 (2007)

    Article  Google Scholar 

  8. Hammond, G.E., Lichtner, P.C., Lu, C., Mills, R.T.: PFLOTRAN: reactive flow and transport code for use on laptops to leadership-class supercomputers. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Ebook: Groundwater Reactive Transport Models. Bentham Science Publishers. ISBN 978-1-60805-029-1 (2010)

  9. Jimenez, E., Sabir, K., Datta-Gupta, A., King, M.J.: Spatial error and convergence in streamline simulation. SPE 92873. In: SPE Reservoir Simulation Symposium, Woodlands, Texas, 31 Jan–2 Feb (2005)

  10. King, M.J., Datta-Gupta, A.: Streamline simulation: a current perspective. In Situ 22(1), 91–140 (1998)

    Google Scholar 

  11. Los Alamos Grid Toolbox: LaGriT, Los Alamos National Laboratory. http://lagrit.lanl.gov (2011)

  12. Lu, N.: A semianalytical method of path line computation for transient finite-difference groundwater flow models. Water Resour. Res. 30(4), 2449–2459 (1994)

    Article  Google Scholar 

  13. Malmström, M., Destouni, G., Martinet, P.: Modeling expected solute concentration in randomly heterogeneous flow systems with multi-component reactions. Environ. Sci. Technol. 38, 2673–2679 (2004)

    Article  Google Scholar 

  14. Matringe, S.F., Juanes, R., Tchelepi, H.A.: Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids. J. Comp. Physics 219(2), 992–1012 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Matringe, S.F., Juanes, R., Tchelepi, H.A.: Tracing streamlines on unstructured grids from finite volume discretizations. Soc. Pet. Eng. J. 6(3), 423–431 (2008)

    Google Scholar 

  16. Morel-Seytoux, H.J.: Unit mobility ratio displacement calculations for pattern floods in homogeneous medium. Soc. Pet. Eng. J. 13(4), 217–227 (1966)

    Google Scholar 

  17. Naff, R.L., Russell, T.F., Wilson, J.D.: Shape functions for velocity interpolation in general hexahedral cells. Comput. Geosci. 6(3–4), 285–314 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Narasimhan, T.N., Witherspoon, P.A.: An integrated finite difference method for analyzing fluid flow in porous media. Water Resour. Res. 12(1), 57–64 (1976)

    Article  Google Scholar 

  19. Park, C.H., Beyer, C., Bauer, S., Kolditz, O.: Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Environ. Geol. 55, 1755–1766 (2008). doi:10.1007/s00254-007-1126-7

    Google Scholar 

  20. Pollock, D.W.: Semi-analytical computation of path lines for finite-difference models. Ground Water 26(6), 743–750 (1988)

    Article  Google Scholar 

  21. Prevost, M., Edwards, M.G., Blunt, M.J.: Streamline tracing on curvilinear structured and unstructured grids. SPE J. 7(2), 139–148 (2002)

    Google Scholar 

  22. Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s Guide, Version 2.0. LBNL-43134. Lawrence Berkeley National Laboratory, Berkeley California (1999)

    Book  Google Scholar 

  23. Yeh, G.T.: On the computation of Darcian velocity and mass balance in the finite-element modeling of groundwater-flow. Water Resour. Res. 17(2), 1529–1534 (1981)

    Article  Google Scholar 

  24. Zyvoloski, G.A.: FEHM: A Control Volume Finite Element Code for Simulating Subsurface Multi-phase Multi-fluid Heat and Mass Transfer. Los Alamos Unclassified Report LA-UR-07-3359, Los Alamos National Laboratory, Los Alamos, NM (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Painter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Painter, S.L., Gable, C.W. & Kelkar, S. Pathline tracing on fully unstructured control-volume grids. Comput Geosci 16, 1125–1134 (2012). https://doi.org/10.1007/s10596-012-9307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9307-1

Keywords

Navigation