Skip to main content
Log in

A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Large-scale simulations of coupled flow in deformable porous media require iterative methods for solving the systems of linear algebraic equations. Construction of efficient iterative methods is particularly challenging in problems with large jumps in material properties, which is often the case in realistic geological applications, such as basin evolution at regional scales. The success of iterative methods for such problems depends strongly on finding effective preconditioners with good parallel scaling properties, which is the topic of the present paper. We present a parallel preconditioner for Biot’s equations of coupled elasticity and fluid flow in porous media. The preconditioner is based on an approximation of the exact inverse of the two-by-two block system arising from a finite element discretisation. The approximation relies on a highly scalable approximation of the global Schur complement of the coefficient matrix, combined with generally available state-of-the-art multilevel preconditioners for the individual blocks. This preconditioner is shown to be robust on problems with highly heterogeneous material parameters. We investigate the weak and strong parallel scaling of this preconditioner on up to 512 processors and demonstrate its ability on a realistic basin-scale problem in poroelasticity with over eight million tetrahedral elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, M.: Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics. Int. J. Numer. Methods Eng. 55, 519–534 (2002). doi:10.1002/nme.506

    Article  MATH  Google Scholar 

  2. Adams, M.F., Bayraktar, H.H., Keaveny, T.M., Papadopoulos, P.: Ultrascalable implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC2004), IEEE Computer Society, p. 34 (2004)

  3. The Simula computer cluster bigblue. http://simula.no/research/sc/cbc/events/2008/081105-slides/bigblue-intro.pdf

  4. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941). doi:10.1063/1.1712886

    Article  MATH  Google Scholar 

  5. Brezina, M., Falgout, R., MacLachlan, S., Manteuffel, T., McCormick, S., Ruge, J.: Adaptive smoothed aggregation (αSA). SIAM J. Sci. Comput. 25(6), 1896–1920 (2004). doi:10.1137/S1064827502418598

    Article  MathSciNet  MATH  Google Scholar 

  6. Catalyurek, U.V., Boman, E.G., Devine, K.D., Bozdag, D., Heaphy, R.T., Riesen, L.A.: Hypergraph-based dynamic load balancing for adaptive scientific computations. In: Proc. of 21st International Parallel and Distributed Processing Symposium (IPDPS’07). IEEE (2007)

  7. Chow, E., Falgout, R.D., Hu, J.J., Tuminaro, R., Yang, U.M.: A survey of parallelization techniques for multigrid solvers. In: Heroux M.A., Raghavan P., Simon H.D. (eds.) Parallel Processing for Scientific Computing, pp. 179–202. SIAM, Philadelphia (2006)

    Chapter  Google Scholar 

  8. Library for numerical solution of PDEs from inuTech GmbH. http://www.diffpack.com/

  9. Doi, S., Washio, T.: Ordering strategies and related techniques to overcome the trade-off between parallelism and convergence in incomplete factorizations. Parallel Comput. 25, 1995–2014 (1999). doi:10.1016/S0167-8191(99)00064-2

    Article  MathSciNet  Google Scholar 

  10. Elman, H.C., Howle, V.E., Shadid, J.N., Shuttleworth, R., Tuminaro, R.S.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. J. Comput. Phys. 227(3), 1790–1808 (2007). doi:10.1016/j.jcp.2007.09.026

    Article  MathSciNet  Google Scholar 

  11. Elman, H.C., Howle, V.E., Shadid, J.N., Tuminaro, R.S.: A parallel block multi-level preconditioner for the 3D incompressible Navier–Stokes equations. J. Comput. Phys. 187(2), 504–523 (2003). doi:10.1016/S0021-9991(03)00121-9

    Article  MATH  Google Scholar 

  12. Fletcher, R.: Conjugate gradient methods for indefinite systems. In: Watson G. (ed.) Numerical Analysis, Lecture Notes in Mathematics, vol. 506, pp. 73–89. Springer, Berlin (1976). doi:10.1007/BFb0080116

    Google Scholar 

  13. Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 smoothed aggregation user’s guide. Tech. Rep. SAND2006-2649, Sandia National Laboratories (2006). http://software.sandia.gov/trilinos/packages/ml/

  14. George, A., Ng, E.: On the complexity of sparse QR and LU factorization of finite-element matrices. SIAM J. Sci. Stat. Comput. 9, 849 (1988). doi:10.1137/0909057

    Article  MathSciNet  MATH  Google Scholar 

  15. Hackbush, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, Berlin (1995)

    Google Scholar 

  16. Haga, J.B., Langtangen, H.P., Nielsen, B.F., Osnes, H.: On the performance of an algebraic multigrid preconditioner for the pressure equation with highly discontinuous media. In: Skallerud B., Andersson H.I. (eds.) Proceedings of MekIT’09, pp. 191–204. NTNU, Tapir (2009). http://simula.no/research/sc/publications/Simula.SC.568

  17. Haga, J.B., Langtangen, H.P., Osnes, H.: On the causes of pressure oscillations in low-permeable and low-compressible porous media (2010). Int. J. Numer. Anal. Methods Geomech. (http://simula.no/publications/Simula.simula.18)

  18. Haga, J.B., Osnes, H., Langtangen, H.P.: Efficient block preconditioners for the coupled equations of pressure and deformation in highly discontinuous media. Int. J. Numer. Anal. Methods Geomech. (2010). http://simula.no/research/sc/publications/Simula.SC.660

  19. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An overview of the Trilinos project. ACM Trans. Math. Softw. 31(3), 397–423 (2005). doi:10.1145/1089014.1089021

    Article  MathSciNet  MATH  Google Scholar 

  20. The NOTUR computer cluster hexagon. http://www.notur.no/hardware/hexagon

  21. Joubert, W., Cullum, J.: Scalable algebraic multigrid on 3500 processors. Electron. Trans. Numer. Anal. 23, 105–128 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Karypis, G., Schloegel, K., Kumar, V.: ParMETIS parallel graph partitioning and sparse matrix ordering library, version 3.1. University of Minnesota, Minneapolis (2003). http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

  23. Langtangen, H.P.: Computational Partial Differential Equations: Numerical Methods and Diffpack Programming, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  24. Petroleum systems modelling software from Schlumberger Aachen Technology Center. http://www.petromod.com/

  25. Phoon, K.K., Toh, K.C., Chan, S.H., Lee, F.H.: An efficient diagonal preconditioner for finite element solution of Biot’s consolidation equations. Int. J. Numer. Methods Eng. 55, 377–400 (2002). doi:10.1002/nme.500

    Article  MATH  Google Scholar 

  26. Thakur, R., Gropp, W.: Improving the performance of collective operations in MPICH. In: Recent Adv. Parallel Virtual Mach. Message Passing Interface, pp. 257–267 (2003)

  27. Toh, K.C., Phoon, K.K., Chan, S.H.: Block preconditioners for symmetric indefinite linear systems. Int. J. Numer. Methods Eng. 60, 1361–1381 (2004). doi:10.1002/nme.982

    Article  MathSciNet  MATH  Google Scholar 

  28. Tuminaro, R.S., Tong, C.: Parallel smoothed aggregation multigrid: Aggregation strategies on massively parallel machines. In: Proceedings of the 2000 ACM/IEEE conference on Supercomputing. IEEE Computer Society (2000). doi:10.1109/SC.2000.10008

  29. Yang, U.M.: Parallel algebraic multigrid methods—high performance preconditioners. In: Bruaset A.M., Tveito A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Computers, pp. 209–236. Springer, Berlin (2006). doi:10.1007/3-540-31619-1_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Berdal Haga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haga, J.B., Osnes, H. & Langtangen, H.P. A parallel block preconditioner for large-scale poroelasticity with highly heterogeneous material parameters. Comput Geosci 16, 723–734 (2012). https://doi.org/10.1007/s10596-012-9284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9284-4

Keywords

Mathematics Subject Classifications (2000)

Navigation