Skip to main content
Log in

Rational approximation for estimation of quality Q factor and phase velocity in linear, viscoelastic, isotropic media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The article presents a numerical inversion method for estimation of quality Q factor and phase velocity in linear, viscoelastic, isotropic media using reconstruction of relaxation spectrum from measured or computed complex velocity or modulus of the medium. Mathematically, the problem is formulated as an inverse problem for reconstruction of relaxation spectrum in the analytic Stieltjes representation of the complex modulus using rational approximation. A rational (Padé) approximation to the relaxation spec trum is derived from a constrained least squares minimization problem with regularization. The recovered stress-strain relaxation spectrum is applied to numerical calculation of frequency-dependent Q factor and frequency-dependent phase velocity for known analytical models of a standard linear viscoelastic solid (Zener) model as well as a nearly constant-Q model which has a continuous spectrum. Numerical results for these analytic models show good agreement between theoretical and predicted values and demonstrate the validity of the algorithm. The proposed method can be used for evaluating relaxation mechanisms in seismic wavefield simulation of viscoelastic media. The constructed lower order Padé approximation can be used for determination of the internal memory variables in time-domain finite difference numerical simulation of viscoelastic wave propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amundsen, L., Mittet, R.: Estimation of phase velocities and Q-factors from zero-offset, vertical seismic profile data. Geophysics 59, 500–517 (1994)

    Article  Google Scholar 

  2. Baker Jr., G.A., Graves-Morris, P.: Padé Approximations. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  3. Bergman, D.J.: The dielectric constant of a composite material - a problem in classical physics. Phys. Rep. C 43, 377–407 (1978)

    Article  MathSciNet  Google Scholar 

  4. Bergman, D.J.: Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material. Phys. Rev. Lett. 44, 1285 (1980)

    Article  Google Scholar 

  5. Blanch, J.O., Robertsson, J.O.A., Symes, W.W.: Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics 60, 176–184 (1995)

    Article  Google Scholar 

  6. Cheney, E.W.: Introduction to Approximation Theory, 2nd edn. Chelsea Publishing Company (1982)

    MATH  Google Scholar 

  7. Carcione, J.M., Kosloff, D., Kosloff, R.: Wave propagation simulation in a linear viscoelastic medium. Geophys. J. R. Astron. Soc. 93, 393–407 (1988)

    MATH  Google Scholar 

  8. Carcione, J.M., Kosloff, D., Kosloff, R.: Wave propagation simulation in a linear viscoelastic medium. Geophys. J. R. Astron. Soc. 95, 597–611 (1988)

    MATH  Google Scholar 

  9. Carcione, J.M.: Wave Fields in Real Media: wave propagation in anisotropic, anelastic, porous and electromagnetic media, 2nd ed. Elsevier (2007)

  10. Cherkaev, E.: Inverse homogenization for evaluation of effective properties of a mixture. Inverse Probl. 17, 1203–1218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dasgupta, R., Clark, R.A.: Estimation of Q from surface seismic reflection data. Geophysics 63, 2120–2128 (1998)

    Article  Google Scholar 

  12. Day, S.M., Minster, J.B.: Numerical simulation of attenuated wavefields using a Padé approximant method. Geophys. J. R. Astron. Soc. 78, 105–118 (1984)

    MATH  Google Scholar 

  13. Day, S.M.: Efficient simulation of constant Q using coarse-grained memory variables. Bull. Seismol. Soc. Am. 88, 1051–1062 (1998)

    Google Scholar 

  14. Day, S.M., Bradley, C.R.: Memory-efficient simulation of anelastic wave propagation. Bull. Seismol. Soc. Am. 91, 520–531 (2001)

    Article  Google Scholar 

  15. Ely, G.P., Day, S.M., Minster, J.B.: A support-operator method for viscoelastic wave modelling in 3-D heterogeneous media. Geophys. J. Int. 172, 331–344 (2008)

    Article  Google Scholar 

  16. Emmerich, E., Korn, M.: Incorporation of attenuation into time-domain computations of seismic wave fields. Geophysics 52, 1252–1264 (1987)

    Article  Google Scholar 

  17. Emmerich, E.: PSV-wave propagation in a medium with local heterogeneities: a hybrid formulation and its application. Geophys. J. Int. 109, 54–64 (1992)

    Article  Google Scholar 

  18. Fierro, R.D., Golub, G.H., Hansen, P.C., O’Leary, D.P.: Regularization by truncated total least squares. SIAM J. Sci. Comput. 18, 1223-1241 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Golden, K., Papanicolaou, G.: Bounds on effective parameters of heterogeneous media by analytic continuation. Commun. Math. Phys. 90, 473–491 (1983)

    Article  MathSciNet  Google Scholar 

  20. Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21, 185–194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Graves, R.W., Day, S.M.: Stability and accuracy of coarse-grain viscoelastic simulations. Bull. Seismol. Soc. Am. 93, 283–300 (2003)

    Article  Google Scholar 

  22. Kjartansson, E.: Constant Q-wave propagation and attenuation. J. Geophys. Res. 84, 4737–4748 (1979)

    Article  Google Scholar 

  23. Kosloff, D., Baysal, E.: Forward modeling by a Fourier method. Geophysics 47, 1402–1412 (1982)

    Article  Google Scholar 

  24. Krebes, E.S., Quiroaa-Goode, G.: A standard finite-difference scheme for the time-domain computation of anelastic wavefields. Geophysics 59, 290–296 (1994)

    Article  Google Scholar 

  25. Liu, P., Achuleta, R.J.: Efficient modeling of Q for 3D numerical simulation of wave propagation. Bull. Seismol. Soc. Am. 96, 1352–1358 (2006)

    Article  Google Scholar 

  26. Liu, H.P., Anderson, D.L., Kanamori, H.: Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys. J. R. Astron. Soc. 47, 41–58 (1976)

    Google Scholar 

  27. Margrave, G.F., Lamoureux, M.P., Grossman, J.P., Iliescu, V.: Gabor deconvolution of seismic data for source waveform and Q correction. In: 72nd Ann. Internat. Mtg., Soc. Expl. Geophys. pp. 714–717 (2002)

  28. Margrave, G.F., Gibson, P.C., Grossman, J.P., Henley, D.C., Iliescu, V., Lamoureux, M.P.: The Gabor transform, pseudodifferential operators, and seismic deconvolution. Integr. Comput.-Aided Eng. 12, 43–55 (2005)

    Google Scholar 

  29. Milton, G.W.: Bounds on the complex dielectric constant of a composite material. Appl. Phys. Lett. 37, 300–302 (1980)

    Article  Google Scholar 

  30. Robertsson, J.O.A., Blanch, J.O., Symes, W.W.: Viscoelastic finite-difference modeling. Geophysics 59, 1444–1456 (1994)

    Article  Google Scholar 

  31. Tal-Ezer, H., Carcione, J.M., Kosloff, D.: An accurate and efficient scheme for wave propagation in linear viscoelastic media. Geophysics 55, 1366–1379 (1990)

    Article  Google Scholar 

  32. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-posed Problems. Willey, New York (1977)

    MATH  Google Scholar 

  33. Tonn, R.: The determination of the seismic quality factor Q from VSP data: a comparison of different computational methods. Geophys. Prospect. 39, 1–27 (1991)

    Article  Google Scholar 

  34. Ursin, B., Toverud, T.: Comparison of seismic dispersion and attenuation models. Stud. Geophys. Geod. 46, 293–320 (2002)

    Article  Google Scholar 

  35. Toverud, T., Ursin, B.: Comparison of seismic attenuation models using zero-offset vetival seismic profiling (VSP) data. Geophysics 70, F17–F25 (2005)

    Article  Google Scholar 

  36. Wang, Y.: A stable and efficient approach of inverse Q filtering. Geophysics 67, 657–663 (2002)

    Article  Google Scholar 

  37. Wang, Y.: Quantifying the effectiveness of stabilized inverse Q filtering. Geophysics 68, 337–345 (2003)

    Article  Google Scholar 

  38. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)

    Google Scholar 

  39. Xu, T., McMechan, G.A.: Composite memory variables for viscoelastic synthetic seismograms. Geophys. J. Int. 121, 634–639 (1995)

    Article  Google Scholar 

  40. Zhang, C., Ulrych, T.J.: Estimation of quality factors from CMP records. Geophysics 67, 1542–1547 (2002)

    Article  Google Scholar 

  41. Zhang, C., Ulrych, T.J.: Seismic absorption compensation: A least squares inverse scheme. Geophysics 72, R109–R114 (2007)

    Article  Google Scholar 

  42. Zhang, D., Cherkaev, E.: Padé approximations for identification of air bubble volume from temperature or frequency dependent permittivity of a two-component mixture. Inv. Prob. Sci. Eng. 16(4), 425–445 (2008)

    Article  MathSciNet  Google Scholar 

  43. Zhang, D., Cherkaev, E.: Reconstruction of spectral function from effective permittivity of a composite material using rational function approximations. J. Comput. Phys. 228(15), 5390–5409 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhang, D., Lamoureux M.P., Margrave, G.F.: Estimation of Q and phase velocity using the stress-strain relaxation sepectrum. University of Calgary CREWES Research Report vol. 21 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dali Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Lamoureux, M.P., Margrave, G.F. et al. Rational approximation for estimation of quality Q factor and phase velocity in linear, viscoelastic, isotropic media. Comput Geosci 15, 117–133 (2011). https://doi.org/10.1007/s10596-010-9201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-010-9201-7

Keywords

Mathematics Subject Classification (2010)

Navigation