Skip to main content
Log in

Mixed multiscale finite element methods using approximate global information based on partial upscaling

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308–317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarnes, J.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. SIAM MMS 2, 421–439 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Aarnes, J., Efendiev, Y., Jiang, L.: Mixed multiscale finite element methods using limited global information. SIAM Multiscale Model. Simul. 7(2), 655–676 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aarnes, J., Krogstad, S., Lie, K.A.: A hierarchical multiscale method for two-phase flow based on upon mixed finite elements and nonuniform coarse grids. Multiscale Model. Simul. 5(2), 337–363 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aarnes, J.E., Hauge, V., Efendiev, Y.: Coarsening of three-dimensional structured and unstructured grids for subsurface flow. Adv. Water Resour. 30(11), 2177–2193 (2007)

    Article  Google Scholar 

  5. Allaire, G., Brizzi, R.: A multiscale finite element method for numerical homogenization. SIAM MMS 4(3), 790–812 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Arbogast, T.: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Comput. Geosci. 6, 453–481 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Avellaneda, M., Lin, F.-H.: Compactness method in the theory of homogenization. Commun. Pure Appl. Math. 40(6), 803–847 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Babus̆ka, I., Osborn, E.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)

    Article  MathSciNet  Google Scholar 

  9. Babus̆ka, I., Caloz, G., Osborn, E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    Article  MathSciNet  Google Scholar 

  10. Brezzi, F.: Interacting with the subgrid world. In: Numerical Analysis 1999 (Dundee), pp. 69–82. Chapman & Hall/CRC, Boca Raton, FL (2000)

    Google Scholar 

  11. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    MATH  Google Scholar 

  12. Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2002)

    Article  MathSciNet  Google Scholar 

  13. Chen, Y., Durlofsky, L.J., Gerritsen, M., Wen, X.H.: A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations. Adv. Water Resour. 26, 1041–1060 (2003)

    Article  Google Scholar 

  14. Christie, M., Blunt, M.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Evalu. Eng. 4, 308–317 (2001)

    Google Scholar 

  15. Deutsch, C., Journel, A.: GSLIB: Geostatistical Software Library and User’S Guide, 2nd edn. Oxford University Press, New York (1998)

    Google Scholar 

  16. Durlofsky, L.J.: Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resour. Res. 27, 699–708 (1991)

    Article  Google Scholar 

  17. Durlofsky, L.J., Efendiev, Y., Ginting, V.: An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Adv. Water Resour. 30, 576–588 (2007)

    Article  Google Scholar 

  18. Efendiev, Y., Hou, T., Ginting, V.: Multiscale finite element methods for nonlinear problems and their applications. Commun. Math. Sci. 2, 553–589 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Efendiev, Y., Ginting, V., Hou, T., Ewing, R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  21. Franca, L., Madureira, A., Valentin, F.: Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions. Comput. Methods Appl. Mech. Eng. 194(27–29), 3006–3021 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hughes, T., Feijoo, G., Mazzei, L., Quincy, J.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Jikov, V., Kozlov, S., Oleinik, O.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994) (Translated from Russian)

    Google Scholar 

  25. Moskow, S., Vogelius, M.: First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof. Proc. R. Soc. Edinb. Sect. A 127(6), 1263–1299 (1997)

    MATH  MathSciNet  Google Scholar 

  26. Murat, F., Tartar, L.: H-convergence, in topics in the mathematical modeling of composite materials. In: Cherkaev, A., Kohn, R.V. (eds.) Progress in Nonlinear Differential Equations and their Applications. Birkhauser, Boston (1997)

    Google Scholar 

  27. Owhadi, H., Zhang, L.: Metric based up-scaling. Commun. Pure Appl. Math. 60, 675–723 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sangalli, G.: Capturing small scales in elliptic problems using a residual-free bubbles finite element method. Multiscale Model. Simul. 1, 485–503 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wu, X.H., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discrete Continuous Dyn. Syst. Ser. B 2(2), 185–204 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijian Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Efendiev, Y. & Mishev, I. Mixed multiscale finite element methods using approximate global information based on partial upscaling. Comput Geosci 14, 319–341 (2010). https://doi.org/10.1007/s10596-009-9165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-009-9165-7

Keywords

Navigation