Skip to main content
Log in

A front-tracking method for the simulation of three-phase flow in porous media

  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Under certain physically reasonable assumptions, three-phase flow of immiscible, incompressible fluids can be described by a 2×2 nongenuinely nonlinear, hyperbolic system. We combine analytical solutions to the corresponding Riemann problem with an efficient front-tracking method to study Cauchy and initial-boundary value problems. Unlike finite difference methods, the front-tracking method treats all waves as discontinuities by evolving shocks exactly and approximating rarefactions by small entropy-violating discontinuities. This way, the method can track individual waves and give very accurate (or even exact) resolution of discontinuities. We demonstrate the applicability of the method through several numerical examples, including a streamline simulation of a water-alternating-gas (WAG) injection process in a three-dimensional, heterogeneous, shallow-marine formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ancona and A. Marson, A note on the Riemann problem for general n×n conservation laws, J. Math. Anal. Appl. 260 (2001) 279–293.

    Article  Google Scholar 

  2. A.V. Azevedo, D. Marchesin, B. Plohr and K. Zumbrun, Capillary instability in models for three-phase flow, Z. Angew. Math. Phys. 53 (2002) 713–746.

    Article  Google Scholar 

  3. J.B. Bell, J.A. Trangenstein and G.R. Shubin, Conservation laws of mixed type describing three-phase flow in porous media, SIAM J. Appl. Math. 46(6) (1986) 1000–1017.

    Article  Google Scholar 

  4. I. Berre, H.K. Dahle, K.H. Karlsen and H.F. Nordhaug, A streamline front tracking method for two- and three-phase flow including capillary forces, in: Fluid Flow and Transport in Porous Media: Mathematical and Numerical Treatment, eds. Z. Chen and R.E. Ewing, Contemporary Mathematics, Vol. 295 (Amer. Math. Soc., Providence, RI, 2002) pp. 49–61.

    Google Scholar 

  5. F. Bratvedt, K. Bratvedt, C.F. Buchholz, T. Gimse, H. Holden, L. Holden and N.H. Risebro, Frontline and Frontsim, two full scale, two-phase, black oil reservoir simulators based on front tracking, Surveys Math. Indust. 3 (1993) 185–215.

    Google Scholar 

  6. A. Bressan, Global solutions of systems of conservation laws by wave-front tracking, J. Math. Anal. Appl. 170 (1992) 414–432.

    Article  Google Scholar 

  7. A. Bressan, G. Crasta and B. Piccoli, Well-posedness of the Cauchy problem for n×n systems of conservation laws, Mem. Amer. Math. Soc. 694 (2000) 1–134.

    Google Scholar 

  8. A. Bressan and P. LeFloch, Uniqueness of weak solutions to systems of conservation laws, Arch. Rational Mech. Anal. 140(4) (1997) 301–317.

    Article  Google Scholar 

  9. I.A. Charny, Subterranean Hydro-Gas Dynamics (Gostoptekhizdat, Moscow, 1963) (in Russian).

    Google Scholar 

  10. G. Chavent and J. Jaffré, Mathematical Models and Finite Elements for Reservoir Simulation (Elsevier/North-Holland, Amsterdam, 1986).

    Google Scholar 

  11. M.A. Christie and M.J. Blunt, Tenth SPE comparative solution project: A comparison of upscaling techniques, SPE Reserv. Eval. Engrg. 4(4) (2001) 308–317; url: www.spe.org/csp.

    CAS  Google Scholar 

  12. C. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl. 38 (1972) 33–41.

    Article  Google Scholar 

  13. A.H. Falls and W.M. Schulte, Theory of three component, three phase displacement in porous media, SPE Reserv. Engrg. 7(3) (1992) 377–384.

    CAS  Google Scholar 

  14. A.H. Falls and W.M. Schulte, Features of three component, three phase displacement in porous media, SPE Reserv. Engrg. 7(4) (1992) 426–432.

    CAS  Google Scholar 

  15. F.J. Fayers, Extension of Stone’s method I and conditions for real characteristics in three-phase flow, in: SPE Annual Technical Conf. and Exhibition, Dallas, TX (SPE 16965) (27–30 September 1987).

  16. R.E. Guzmán and F.J. Fayers, Mathematical properties of three-phase flow equations, Soc. Pet. Engrg. J. 2(3) (1997) 291–300.

    Google Scholar 

  17. R.E. Guzmán and F.J. Fayers, Solution to the three-phase Buckley–Leverett problem, Soc. Pet. Engrg. J. 2(3) (1997) 301–311.

    Google Scholar 

  18. F.G. Helfferich, Theory of multicomponent, multiphase displacement in porous media, Soc. Pet. Engrg. J. 21(1) (1981) 51–62.

    Google Scholar 

  19. P.J. Hicks Jr. and A.S. Grader, Simulation of three-phase displacement experiments, Transp. Porous Media 24 (1996) 221–245.

    Article  CAS  Google Scholar 

  20. L. Holden, On the strict hyperbolicity of the Buckley–Leverett equations for three-phase flow in a porous medium, SIAM J. Appl. Math. 50(3) (1990) 667–682.

    Article  Google Scholar 

  21. H. Holden, L. Holden and R. Høegh-Krohn, A numerical method for first order nonlinear scalar conservation laws in one-dimension, Comput. Math. Appl. 15(6–8) (1988) 595–602.

    Article  Google Scholar 

  22. H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws (Springer, New York, 2002).

    Google Scholar 

  23. M.D. Jackson and M.J. Blunt, Elliptic regions and stable solutions for three-phase flow in porous media, Transp. Porous Media 48 (2002) 249–269.

    Article  MathSciNet  Google Scholar 

  24. R. Juanes and K.-A. Lie, A front-tracking method for efficient simulation of miscible gas injection processes, in: SPE Reservoir Simulation Symposium, Houston, TX (SPE 93298) (January 31–February 2 2005).

  25. R. Juanes and T.W. Patzek, Analytical solution to the Riemann problem of three-phase flow in porous media, Transp. Porous Media 55(1) (2004) 47–70.

    Article  Google Scholar 

  26. R. Juanes and T.W. Patzek, Relative permeabilities for strictly hyperbolic models of three-phase flow in porous media, Transp. Porous Media 57(2) (2004) 125–152.

    Article  CAS  MathSciNet  Google Scholar 

  27. M.J. King and A. Datta-Gupta, Streamline simulation: A current perspective, In Situ 22(1) (1998) 91–140.

    Google Scholar 

  28. A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations, SIAM J. Sci. Comput. 23 (2001) 707–740.

    Article  Google Scholar 

  29. L.W. Lake, Enhanced Oil Recovery (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  30. J.O. Langseth, N.H. Risebro and A. Tveito, A conservative front tracking scheme for 1D hyperbolic conservation laws, in: Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, eds. A. Donato and F. Oliveri, Taormina (1992), Notes on Numerical Fluid Mechanics, Vol. 43 (Vieweg, Braunschweig, 1993) pp. 385–392.

    Google Scholar 

  31. P.D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10 (1957) 537–566.

    Google Scholar 

  32. T.-P. Liu, The Riemann problem for general 2×2 conservation laws, Trans. Amer. Math. Soc. 199 (1974) 89–112.

    Google Scholar 

  33. D. Marchesin and B.J. Plohr, Wave structure in WAG recovery, Soc. Pet. Engrg. J. 6(2) (2001) 209–219.

    Google Scholar 

  34. D.W. Pollock, Semianalytical computation of path lines for finite difference models, Ground Water 26 (1988) 743–750.

    CAS  Google Scholar 

  35. G.A. Pope, The application of fractional flow theory to enhanced oil recovery, Soc. Pet. Engrg. J. 20(3) (1980) 191–205.

    CAS  Google Scholar 

  36. N.H. Risebro, A front-tracking alternative to the random choice method, Proc. Amer. Math. Soc. 117(4) (1993) 1125–1129.

    Google Scholar 

  37. N.H. Risebro and A. Tveito, Front tracking applied to a nonstrictly hyperbolic system of conservation laws, SIAM J. Sci. Statist. Comput. 12(6) (1991) 1401–1419.

    Article  Google Scholar 

  38. A. Sahni, R. Guzmán and M. Blunt, Theoretical analysis of three phase flow experiments in porous media, in: SPE Annual Technical Conf. and Exhibition, Denver, CO (SPE 36664) (6–9 October 1996).

  39. B.V. Shalimov, Filtration of a three-phase liquid (Buckley–Leverett model), Izv. Akad. Nauk SSSR Mekhan. Zhidk. i Gaza 7(1) (1972) 39–44 (in Russian, English translation in Fluid Dyn. 7 (1972) 36–40).

    Google Scholar 

  40. L.F. Shampine and M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput. 18(1) (1997) 1–22.

    Article  Google Scholar 

  41. M. Shearer, Loss of strict hyperbolicity of the Buckley–Leverett equations for three phase flow in a porous medium, in: Numerical Simulation in Oil Recovery, ed. M.F. Wheeler (Springer, New York, 1988) pp. 263–283.

    Google Scholar 

  42. M. Shearer and J.A. Trangenstein, Loss of real characteristics for models of three-phase flow in a porous medium, Transp. Porous Media 4 (1989) 499–525.

    Article  CAS  Google Scholar 

  43. Y.I. Stklyanin, The motion of a mixture of three liquids in a porous medium (in Russian), Izv. Akad. Nauk SSSR Otd. Tekhn. Nauk Mekhanika i Mashinostroenie 2(5) (1960).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. -A. Lie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lie, K.A., Juanes, R. A front-tracking method for the simulation of three-phase flow in porous media. Comput Geosci 9, 29–59 (2005). https://doi.org/10.1007/s10596-005-5663-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-005-5663-4

Keywords

Navigation