Skip to main content
Log in

Quantum-Chemical Investigation of Azoles 1. Alternative Electrophilic Substitution Mechanisms in 1,2- and 1,3-Azoles*

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Quantum-chemical calculations were performed for the molecular structures of 1,2-azoles (pyrazole, isoxazole, isothiazole), 1,3-azoles (imidazole, oxazole, thiazole), and the corresponding intermediates of electrophilic substitution reactions (with protons as the model electrophiles): azolium ions, bipolar ions (ylides/carbenes), cationic σ-complexes, as well as activation energy values were calculated for the decomposition of ylides. The calculations were performed for gas phase and aqueous solutions according to the B3LYP method in a 6-31G(d) basis set, with corrections for the zero-point vibration energy. The solvation effects were taken into account by using the overlapping spheres model (IEFPCM). The results of the calculations explained some features of electrophilic substitution in azoles according to two alternative mechanisms: the classical addition-elimination with cationic σ-complex intermediates, and the mechanism of elimination-addition that involves ylides (carbenes) as key intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The DFT/B3LYP method has been applied before to high-fidelity structural and energy calculations of five-membered heterocycles with one heteroatom and the corresponding benzo-fused systems [15,1720], as well as azoles (for example, pyrazole [21] and oxazole [22]). Similar results and conclusions for heterocyclic systems were also obtained with the HF method [15,19,20].

References

  1. O. P. Shvaika, N. I. Korotkikh, and A. F. Aslanov, Khim. Geterotsikl. Soedin., 1155 (1992). [Chem. Heterocycl. Compd., 28, 971 (1992).]

    Google Scholar 

  2. A. J. Arduengo III and G. Bertrand, Chem. Rev., 109, 3209 (2009).

    Article  CAS  Google Scholar 

  3. N. I. Korotkikh, V. Sh. Saberov, N. V. Glinyanaya, K. A. Marichev, A. V. Kiselyov, A. V. Khishevitsky, G. F. Rayenko, and O. P. Shvaika, Khim. Geterotsikl. Soedin., 25 (2013). [Chem. Heterocycl. Compd., 49, 19 (2013).]

  4. J. Elguero, I. Alkorta, R. M. Claramunt, P. Cabildo, P. Gornago, M. Ángeles Farrán, M. Ángeles Garcia, C. López, M. Pérez-Torralba, D. Santa Maria, and D. Sanz, Khim. Geterotsikl. Soedin., 191 (2013). [Chem. Heterocycl. Compd., 49, 177 (2013).]

  5. L. I. Belen'kii and N. D. Chuvylkin, Khim. Geterotsikl. Soedin., 1535 (1996). [Chem. Heterocycl. Compd., 32, 1319 (1996).]

    Google Scholar 

  6. S. Gronert, J. R. Keeffe, and R. A. More O'Ferrall, J. Am. Chem. Soc., 133, 3381 (2011).

    Article  CAS  Google Scholar 

  7. R. Breslow, J. Am. Chem. Soc., 79, 1762 (1957).

    Article  CAS  Google Scholar 

  8. J. D. Vaughan, Z. Mughrabi, and E. C. Wu, J. Org. Chem., 35, 1141 (1970).

    Article  CAS  Google Scholar 

  9. P. Haake, L. P. Bausher, and W. B. Miller, J. Am. Chem. Soc., 91, 1113 (1969).

    Article  CAS  Google Scholar 

  10. A. Dondoni, Phosphorus Sulfur Relat. Elem., 24, 381 (1985).

    CAS  Google Scholar 

  11. E. Chung Wu and J. D. Vaughan, J. Org. Chem., 35, 1146 (1970).

    Article  Google Scholar 

  12. R. A. Olofson and J. M. Landesberg, J. Am. Chem. Soc., 88, 4263 (1966).

    Article  CAS  Google Scholar 

  13. R. B. Woodward and R. A. Olofson, J. Am. Chem. Soc., 83, 1007 (1961).

    Article  CAS  Google Scholar 

  14. P. Haake and W. B. Miller, J. Am. Chem. Soc., 85, 4044 (1963).

    Article  CAS  Google Scholar 

  15. L. I. Belen'kii, T. G. Kim, I. A. Suslov, and N. D. Chuvylkin, Izv. Akad. Nauk, Ser. Khim., 837 (2005). [Russ. Chem. Bull. (Int. Ed.), 54, 853 (2005).]

  16. L. I. Belen'kii, N. D. Chuvylkin, and I. D. Nesterov, Khim. Geterotsikl. Soedin., 256 (2012). [Chem. Heterocycl. Compd., 48, 241 (2012).]

    Google Scholar 

  17. N. D. Chuvylkin, I. D. Nesterov, and L. I. Belen'kii, Izv. Akad. Nauk, Ser. Khim., 1425 (2007). [Russ. Chem. Bull. (Int. Ed.), 56, 1481 (2007).]

    Google Scholar 

  18. B. S. Jursic, J. Heterocycl. Chem., 33, 1079 (1996).

    Article  CAS  Google Scholar 

  19. L. I. Belen'kii, I. A. Suslov, and N. D. Chuvylkin, Khim. Geterotsikl. Soedin., 38 (2003). [Chem. Heterocycl. Compd., 39, 36 (2003).]

    Google Scholar 

  20. V. N. Yarovenko, L. V. Khristoforova, L. I. Belen'kii, N. D. Chuvylkin, and M. M. Krayushkin, Izv. Akad. Nauk, Ser. Khim., 2270 (2011). [Russ. Chem. Bull. (Int. Ed.), 60, 2315 (2011)].

  21. B. S. Jursic, J. Org. Chem., 60, 4721 (1995).

    Article  CAS  Google Scholar 

  22. B. S. Jursic, J. Chem. Soc., Perkin Trans. 2, 1021 (1996).

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burrant, S. S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. S. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Menucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Peterson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malik, A. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. V. Gill, B. Johnson, W. Heng, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A. 5, Gaussian, Inc., Pittsburgh (1998).

  24. L. I. Belen'kii, N. D. Chuvylkin, and I. A. Suslov, Izv. Akad. Nauk, Ser. Khim., 1955 (2001). [Russ. Chem. Bull. (Int. Ed.), 50, 2046 (2001).]

  25. N. D. Chuvylkin and A. M. Tokmachev, Izv. Akad. Nauk, Ser. Khim., 183 (2001). [Russ. Chem. Bull. (Int. Ed.), 50, 188 (2001).]

  26. V. A. Ostrovsky, G. V. Yerusalimsky, and M. B. Scherbinin, Zh. Org. Khim, 29, 1297 (1993). [Russ. J. Org. Chem., 29, 1073 (1993).]

    Google Scholar 

  27. R. A. Coburn, J. M. Landesberg, D. S. Kemp, and R. A. Olofson, Tetrahedron, 26, 685 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Belen’kii.

Additional information

*Dedicated with the warmest wishes to Academician J. Stradiņš on the occasion of his 80th birthday.

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1739-1751, November, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belen’kii, L.I., Nesterov, I.D. & Chuvylkin, N.D. Quantum-Chemical Investigation of Azoles 1. Alternative Electrophilic Substitution Mechanisms in 1,2- and 1,3-Azoles*. Chem Heterocycl Comp 49, 1611–1622 (2014). https://doi.org/10.1007/s10593-014-1412-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-014-1412-8

Keywords

Navigation