Skip to main content

Advertisement

Log in

The conservation genomics of the endangered distylous gypsophile Oreocarya crassipes (Boraginaceae)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Chihuahuan Desert includes many endemic angiosperm species, some having very restricted geographic ranges. One of these species is Oreocarya crassipes (I. M. Johnst.) Hasenstab & M. G. Simpson, an endangered distylous gypsophile from the Trans-Pecos region in southern Brewster County, Texas, USA. The species is known from 10 populations, and this small number of populations, human development in the area, a distylous breeding system, and edaphic requirements threaten the long-term viability of the species. Using both hundreds of single nucleotide polymorphisms identified via tunable genotyping-by-sequencing (tGBS) and 10 microsatellite loci, patterns of genetic diversity, demography, selection, and migration were examined for 192 individuals from four populations of O. crassipes. From the sampled individuals, two populations (clusters) were identified via multiple methodologies and with both types of data. With SNP data, population substructure was further resolved among one of these populations to identify two distinct groups of individuals. Multiple individuals recognized as having mixed ancestry, along with Fst values and AMOVA results, provide evidence of genetic exchange among populations, which is less common for gypsophiles than non-gypsophiles, and the rate of migration among populations has been increasing recently. The Fst values for O. crassipes are more similar to those of other rare species than to other gypsophiles. Additionally, while distyly specifically does not necessarily impact the population genetics of the species, allogamy, which is facilitated by distyly, seems to have played a role in the genetic structure of O. crassipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrett SC (1992) Evolution and function of heterostyly. Springer Science & Business Media, Berlin

    Google Scholar 

  • Barrett S, Shore J (2008) New insights on heterostyly: comparative biology, ecology and genetics. Self-incompatibility in flowering plants. Springer, Berlin, pp 3–32

    Google Scholar 

  • Barrett SC, Jesson LK, Baker AM (2000) The evolution and function of stylar polymorphisms in flowering plants. Ann Bot 85:253–265

    Google Scholar 

  • Beerli P (2009) How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use. Popul Genet Anim Conserv 17:42–79

    Google Scholar 

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    PubMed  PubMed Central  Google Scholar 

  • Bresowar GE, McGlaughlin ME (2014) Characterization of microsatellite markers isolated from members of Oreocarya (Boraginaceae). Conserv Genet Resour 6:205–207

    Google Scholar 

  • Bresowar GE, McGlaughlin ME (2015) Morphological and genetic discrepancies in populations of Oreocarya paradoxa and O. revealii: the impact of edaphic selection on recent diversification in the Colorado Plateau. Am J Bot 102:1647–1658

    CAS  PubMed  Google Scholar 

  • Casper BB (1985) Self-compatibility in distylous Cryptantha flava (Boraginaceae). New Phytol 99:149–154

    Google Scholar 

  • Casper BB (1988) Post-dispersal seed predation may select for wind dispersal but not seed number per dispersal unit in Cryptantha flava. Oikos 52(1):27–30

    Google Scholar 

  • Casper BB, Wiens D (1981) Fixed rates of random ovule abortion in Cryptantha flava (Boraginaceae) and its possible relation to seed dispersal. Ecology 62:866–869

    Google Scholar 

  • Caye K, Jay F, Michel O, Francois O (2017) Fast inference of individual admixture coefficients using geographic data. bioRxiv. https://doi.org/10.1101/080291

    Article  Google Scholar 

  • Coates BS, Sumerford DV, Miller NJ, Kim KS, Sappington TW, Siegfried BD, Lewis LC (2009) Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J Hered 100:556–564

    CAS  PubMed  Google Scholar 

  • Cohen JI (2010) “A case to which no parallel exists”: the influence of Darwin’s different forms of flowers. Am J Bot 97:701–716

    PubMed  Google Scholar 

  • Cohen JI (2014) A phylogenetic analysis of morphological and molecular characters of Boraginaceae: evolutionary relationships, taxonomy, and patterns of character evolution. Cladistics 30:139–169

    PubMed  Google Scholar 

  • Cohen JI, Rodriguez H, Hutcheson H (In review) Distyly in Oreocarya crassipes (Boraginaceae), an endangered species. Southwest Nat

  • Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237

    Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  PubMed  Google Scholar 

  • De Meeûs T, Goudet J (2007) A step-by-step tutorial to use HierFstat to analyse populations hierarchically structured at multiple levels. Infect Genet Evol 7:731–735

    PubMed  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Elias SA, Van Devender TR (1990) Fossil insect evidence for late Quaternary climatic change in the Big Bend region, Chihuahuan Desert, Texas. Quat Res 34:249–261

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, Holderegger R, Widmer A (2017) Estimating genomic diversity and population differentiation–an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom 18:69

    Google Scholar 

  • Foll M (2012) Bayescan v2. 1 user manual. Ecology 20:1450–1462

    Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    PubMed  PubMed Central  Google Scholar 

  • Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929

    Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    PubMed  PubMed Central  Google Scholar 

  • Ganders FR (1979) The biology of heterostyly. NZ J Bot 17:607–635

    Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    CAS  PubMed  Google Scholar 

  • Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Resour 5:184–186

    Google Scholar 

  • Herbert J (2006) Future climate change scenarios for Big Bend National Park, Texas. Southwest Geogr 10:36–51

    Google Scholar 

  • Hernandez HM, Barcenas RT (1995) Endangered cacti in the Chihuahuan Desert: I. Distribution patterns. Conserv Biol 9:1176–1188

    PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    CAS  PubMed  Google Scholar 

  • Jeffries DL, Copp GH, Lawson Handley L, Olsén KH, Sayer CD, Hänfling B (2016) Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Mol Ecol 25:2997–3018

    PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    PubMed  PubMed Central  Google Scholar 

  • Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    PubMed  PubMed Central  Google Scholar 

  • Kerley GI, Whitford WG (2000) Impact of grazing and desertification in the Chihuahuan Desert: plant communities, granivores and granivory. Am Midl Nat 144:78–91

    Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-H, Kim WT (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cells 31:201–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J-M, Zhao J-Y, Lu P-P, Chen M, Guo C-H, Xu Z-S, Ma Y-Z (2016) The E-subgroup pentatricopeptide repeat protein family in Arabidopsis thaliana and confirmation of the responsiveness PPR96 to abiotic stresses. Front Plant Sci 7:1825

    PubMed  PubMed Central  Google Scholar 

  • Maddox JC, Carlquist S (1985) Wind dispersal in Californian desert plants: experimental studies and conceptual considerations. Aliso 11:77–96

    Google Scholar 

  • Meeus S, Honnay O, Jacquemyn H (2012) Strong differences in genetic structure across disjunct, edge, and core populations of the distylous forest herb Pulmonaria officinalis (Boraginaceae). Am J Bot 99:1809–1818

    PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Resour 4:792–794

    Google Scholar 

  • Meyer SE (1986) The ecology of gypsophile endemism in the eastern Mojave Desert. Ecology 67:1303–1313

    Google Scholar 

  • Meyer S, Garcia-Moya E (1986) Gypsum grasslands of northern San Luis Potosi, Mexico: patterns of vegetation, soil, and seasonal moisture availability. Occasional Papers of the Chihuahuan Desert Research Institute, Alpine

    Google Scholar 

  • Michaud G, Monger H, Anderson D (2013) Geomorphic-vegetation relationships using a geopedological classification system, northern Chihuahuan Desert, USA. J Arid Environ 90:45–54

    Google Scholar 

  • Moore MJ, Jansen RK (2007) Origins and biogeography of gypsophily in the Chihuahuan Desert plant group Tiquilia subg. Eddya (Boraginaceae). Systematic Botany 32:392–414

    Google Scholar 

  • Moore MJ, Mota JF, Douglas NA, Olvera HF, Ochoterena H (2014) The ecology, assembly and evolution of gypsophile floras. In: Rajakaruna N, Boyd RS, Harris T (eds) Plant ecology and evolution in harsh environments. Nova Science Publishers, New York, pp 97–128

    Google Scholar 

  • Muldavin EH (2002) Some floristic characteristics of the northern Chihuahuan Desert: a search for its northern boundary. Taxon 51:453–462

    Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    CAS  PubMed  Google Scholar 

  • Ott A, Liu S, Schnable JC, Yeh C-TE, Wang K-S, Schnable PS (2017) tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids Res 45:e178–e178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlik BM, Nickrent DL, Howald AM (1993) The recovery of an endangered plant. I. Creating a new population of Amsinckia grandiflora. Conserv Biol 7:510–526

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295

    Google Scholar 

  • Pina-Martins F, Silva DN, Fino J, Paulo OS (2017) Structure_threader: an improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Mol Ecol Resour 17:e268–e274

    CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet J (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Google Scholar 

  • Powell AM, Turner B (1977) Aspects of the plant biology of the gypsum outcrops of the Chihuahuan Desert. In: Transactions of a symposium on biological resources of the Chihuahuan desert US Department of the Interior, National Park Service, Transactions Proceedings Series, pp 315–325

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Core Team, Vienna

    Google Scholar 

  • Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–589

    PubMed  PubMed Central  Google Scholar 

  • Ratnieks FL, Shackleton K (2015) Does the waggle dance help honey bees to forage at greater distances than expected for their body size? Front Ecol Evol 3:31

    Google Scholar 

  • Raymond M (1995) GENEPOP: population genetics software for exact tests and ecumenism. Vers. 1.2. J Hered 86:248–249

    Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Resour 4:137–138

    Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348

    CAS  PubMed  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    PubMed  Google Scholar 

  • Service USFaW (1993) Draft Terlingua Creek Cat’s-eye (Cryptantha crassipes) Recovery plan. U.S. Fish and Wildlife Service, Austin

    Google Scholar 

  • Shao J-W, Chen W-L, Peng Y-Q, Zhu G-P, Zhang X-P (2009) Genetic diversity within and among populations of the endangered and endemic species Primula merrilliana in China. Biochem Syst Ecol 37:699–706

    CAS  Google Scholar 

  • Shibayama Y, Kadono Y (2007) Reproductive success and genetic structure of populations of the heterostylous aquatic plant Nymphoides indica (L.) Kuntze (Menyanthaceae). Aquat Bot 86:1–8

    CAS  Google Scholar 

  • Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14:401–405

    CAS  PubMed  Google Scholar 

  • Van Rossum F, De Sousa SC, Triest L (2006) Morph-specific differences in reproductive success in the distylous Primula veris in a context of habitat fragmentation. Acta Oecol 30:426–433

    Google Scholar 

  • Verity R, Nichols RA (2016) Estimating the number of subpopulations (K) in structured populations. Genetics 115:180992

    Google Scholar 

  • Villarreal-Quintanilla JA, Bartolomé-Hernández JA, Estrada-Castillón E, Ramírez-Rodríguez H, Martínez-Amador SJ (2017) El elemento endémico de la flora vascular del Desierto Chihuahuense. Acta Bot Mex 18:65–96

    Google Scholar 

  • Wang L, Ware D (2014) CloudSTRUCTURE: infer population STRUCTURE on the cloud. arXiv preprint arXiv:14084081

  • Warnock BJ (2012) Final report—population biology, habitat description and delineation and conservation of Terlingua Creek Cat’s-eye (Cryptantha crassipes). Texas Parks and Wildlife, Texas, p 29

    Google Scholar 

  • Williams MT, Warnock BJ, Betz JM, Beck JJ, Gardner DR, Lee ST, Molyneux RJ, Colegate SM (2011) Detection of high levels of pyrrolizidine-N-oxides in the endangered plant Cryptantha crassipes (Terlingua Creek Cat’s-eye) using HPLC-ESI-MS. Phytochem Anal 22:532–540

    CAS  PubMed  Google Scholar 

  • Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26:873–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan N, Sun Y, Comes HP, Fu CX, Qiu YX (2014) Understanding population structure and historical demography in a conservation context: population genetics of the endangered kirengeshoma palmata (hydrangeaceae). Am J Bot 101:521–529

    PubMed  Google Scholar 

  • Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D. Garcia, J.-M. Choi, M. Williams, and B. Warnock provided wonderful assistance with field work. J. Wells, B. Gardiner, and H. Mills and the O2 Ranch allowed access to property for sampling plants, and the project would not have been possible without their cooperation. C. Ritzi and students identified floral visitors. L. G. Ruane and four reviewers provided helpful comments on the manuscript. A. M. Powell and C. D. Kellogg supported and encouraged the successful completion of the project. Funding for the project came from four sources: primarily from a traditional Section 6 Grant from the Texas Parks and Wildlife (TX E-160-R), from Texas A&M International University and Kettering University, and from the National Science Foundation Major Research Instrumentation Program (Award Number 1725938) for the KUHPC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James I. Cohen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, J.I. The conservation genomics of the endangered distylous gypsophile Oreocarya crassipes (Boraginaceae). Conserv Genet 20, 1315–1328 (2019). https://doi.org/10.1007/s10592-019-01212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01212-1

Keywords

Navigation