Skip to main content

Advertisement

Log in

Contemporary and historical effective population sizes of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) is an anadromous fish of considerable conservation concern, following its long history of overfishing and exposure to a variety of other anthropogenic stressors. Though reaching a large size, population abundances (Nc) of Atlantic sturgeon are not easily surveyed using traditional fishery methods because of their relative scarcity and their many age classes, often exhibiting extensive and differential movements that render them not readily amenable to traditional sampling efforts. A metric of their vulnerability to inbreeding and a possible alternative to Nc for abundance monitoring is effective population size (Ne). We surveyed 14 Atlantic sturgeon populations across their range using a suite of DNA microsatellite markers. Contemporary levels of Ne ranged from 1 in the St. Marys River, Florida–Georgia, to 156 in the Hudson River, New York. Historical Ne estimates averaged about 11.5 × higher than contemporary estimates, with a high of 927 for the Kennebec River population. Because of a mix of life history characteristics that make traditional Ne estimates based on imperfectly mixed year classes of juveniles questionable, we propose and provide results of a new, more robust and diagnostic approach based on sequential cohorts, termed Ne Max. Although contemporary Ne values obtained were at levels that might be considered troublesome, we suggest that the unique life history factors of this species may render it more resistant than other taxa to inbreeding effects. Because of the many differences among populations in size, age, and sex ratio and in harvest histories, we do not believe that a reliable extrapolation factor between Ne and Nc is yet possible. However, ongoing monitoring of Ne and Nc in populations might be sensitive to population changes and could form the basis of determining a relationship between Ne and Nc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ASMFC (Atlantic States Marine Fisheries Commission) (1990) Fishery management plan for Atlantic sturgeon. Fishery Management Report Number 17. Washington DC

  • ASMFC (Atlantic States Marine Fisheries Commission) (1998) Amendment 1 to the interstate fishery management plan for Atlantic sturgeon. Fishery Management Report 31. Washington DC

  • ASMFC (Atlantic States Marine Fisheries Commission) (2017) 2017 Atlantic Sturgeon Benchmark Stock Assessment and Peer Review Report. Washington DC

  • ASSRT (Atlantic Sturgeon Status Review Team) (2007) Status Review of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus). Report to National Marine Fisheries Service, Northeast Regional Office

  • Bahr DL, Peterson DL (2016) Recruitment of juvenile Atlantic sturgeon in the Savannah River, Georgia. Trans Am Fish Soc 145:1171–1178

    Article  Google Scholar 

  • Bain MB (1997) Atlantic and shortnose sturgeon of the Hudson River: common and divergent life history attributes. Environ Biol Fishes 48:347–358

    Article  Google Scholar 

  • Balazik M (2012) Life history analysis of James River Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) with implications for management and recovery of the species. Ph.D. Thesis Virginia Commonwealth University

  • Balazik MT, Musick JA (2015) Dual annual spawning races in Atlantic sturgeon. PLoS ONE. https://doi.org/10.1371/journal.pone.0128234

    Article  PubMed  PubMed Central  Google Scholar 

  • Balazik MT, Garman GC, Van Eenennaam JC, Mohler J, Woods LC III (2012) Empirical evidence of fall spawning by Atlantic sturgeon in the James River, Virginia, USA. Trans Am Fish Soc 141:1465–1471

    Article  Google Scholar 

  • Balazik MT, Farrae DJ, Darden TL, Garman GC (2017) Genetic differentiation of spring-spawning and fall-spawning male Atlantic sturgeon in the James River, Virginia. PLoS ONE. https://doi.org/10.1371/journal.pone.0179661

    Article  PubMed  PubMed Central  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli PE (2009) How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use. In: Bertorelle G, Bruford MW, Hauffe HC, Rizzoli A, Vernesi C (eds) Population genetics for animal conservation, vol 17 of Conservation Biology. Cambridge University Press, Cambridge, pp 42–79

    Chapter  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Blankenship K (2016) Biologists alarmed over lack of young Atlantic sturgeon in surveys. Bay J 26(5)

  • Bracken FS, Hoelzel AR, Hume JB, Lucas MC (2015) Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal and anthropogenic barriers to movement. Mol Ecol 24:1188–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford RG, Bentzen P, Ceapa C, Cook AM, Curry A, LeBlanc P, Stokesbury M (2016) Status of Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) in the Saint John River, New Brunswick. DFO Can Sci Advis Sec Res Doc 2016/072

  • Brown JJ, Murphy GW (2010) Atlantic sturgeon vessel-strike mortalities in the Delaware Estuary. Fisheries 35:72–83

    Article  Google Scholar 

  • Caron F, Tremblay S (1999) Structure and management of an exploited population of Atlantic sturgeon (Acipenser oxyrinchus) in the St. Lawrence estuary, Quebec, Canada. J Appl Ichthy 15:153–156

    Article  Google Scholar 

  • Caron F, Hatin D, Fortin R (2002) Biological characteristics of adult Atlantic sturgeon (Acipenser oxyrinchus) in the Saint Lawrence River estuary and the effectiveness of management rules. J Appl Ichthy 18:580–585

    Article  Google Scholar 

  • Collins MR, Smith TIJ, Post WC, Pashuk O (2000) Habitat utilization and biological characteristics of adult Atlantic sturgeon in two South Carolina rivers. Trans Am Fish Soc 129:982–988

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • COSEWIC (Committee on the Status of Endangered Wildlife in Canada) (2011) COSEWIC assessment and status report on the Atlantic Sturgeon Acipenser oxyrinchus in Canada, Ottawa, Canada

  • Dadswell MJ (2006) A review of the status of Atlantic sturgeon in Canada, with comparisons to populations in the United States and Europe. Fisheries 31:218–229

    Article  Google Scholar 

  • Dadswell MJ, Nack S (2012) An analytical critique of the scientific data used in the NOAA/NMFS 2012 listing of the USA Atlantic coast Atlantic sturgeon population as endangered. 2012 Annual Meeting Atlantic States Marine Fisheries Commission

  • Dadswell MJ, Ceapa C, Spares AD, Stewart ND, Curry RA, Bradford RG, Stokesbury MW (2017) Population characteristics of adult Atlantic sturgeon captured by the commercial fishery in the Saint John River Estuary, New Brunswick. Trans Am Fish Soc 146:318–330

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resources 14:209–214

    Article  CAS  Google Scholar 

  • Eldon B, Wakeley J (2006) Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172:2621–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrae DJ, Schueller PM, Peterson DL (2009) Abundance of juvenile Atlantic sturgeon in the Ogeechee River, Georgia. In: Proceedings of the Annual Conference Southeast Association of Fish and Wildlife Agencies, vol 63, pp 172–176

  • Federal Register (2012a) Endangered and threatened wildlife and plants; final listing determinations for distinct population segments of Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) in the Northeast region. Fed Reg 77:5880–5912

    Google Scholar 

  • Federal Register (2012b) Endangered and threatened wildlife and plants; final listing determinations for two distinct population segments of Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) in the Southeast. Fed Reg 77:5914–5982

    Google Scholar 

  • Felsenstein J (1971) Inbreeding and variance effective numbers in populations with overlapping generations. Genet Res 68:581–597

    CAS  Google Scholar 

  • Flowers HJ, Hightower JE (2015) Estimating sturgeon abundance in the Carolinas using side-scan sonar. Mar Coast Fish 7:1–9

    Article  CAS  Google Scholar 

  • Fox AG, Wirgin I, Peterson DL (In Press). Occurrence of Atlantic sturgeon in the St. Marys River, Georgia. Mar Coastal Fish

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary–ecological perspective. Sinauer Associates, Sunderland, pp 135–150

    Google Scholar 

  • Fritts MW, Grunwald C, Wirgin I, King TL, Peterson DL (2016) Status and genetic character of Atlantic sturgeon in the Satilla River, Georgia. Trans Am Fish Soc 145:69–82

    Article  CAS  Google Scholar 

  • Galligan JP (1960) History of the Connecticut River sturgeon fishery. Wildl Conserv Bull 6:1–6

    Google Scholar 

  • Gilbert KJ, Whitlock MC (2015) Evaluating methods for estimating local effective population size with and without migration. Evolution 69:2154–2166

    Article  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Grogan CS, Boreman J (1998) Estimating the probability that historical populations of fish species are extirpated. N Am J Fish Manag 18:522–529

    Article  Google Scholar 

  • Grunwald C, Maceda L, Waldman J, Stabile J, Wirgin I (2008) Conservation of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus: delineation of stock structure and distinct population segments. Conserv Genet 9:1111–1124

    Article  Google Scholar 

  • Hager C, Kahn J, Watterson C, Russo J, Hartman K (2014) Evidence of Atlantic sturgeon spawning in the York River system. Trans Am Fish Soc 143:1217–1219

    Article  Google Scholar 

  • Hale EA, Park IA, Fisher MT, Wong RA, Stangl MJ, Clark JH (2016) Abundance estimate for and habitat use by early juvenile Atlantic sturgeon within the Delaware River Estuary. Trans Am Fish Soc 145:1193–1201

    Article  Google Scholar 

  • Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra F (2011) Understanding and estimating effective population size for practical application in marine species management. Conserv Biol 25:438–449

    Article  PubMed  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fisheries 9:333–362

    Article  Google Scholar 

  • Henderson-Arzapalo A, King TL (2002) Novel microsatellite markers for Atlantic sturgeon population delineation and broodstock management. Mol Ecol Notes 2:437–439

    Article  CAS  Google Scholar 

  • Hilton EJ, Kynard B, Balazik MT, Horodysky AZ, Dillman CB (2016) Review of the biology, fisheries, and conservation status of the Atlantic sturgeon, (Acipenser oxyrinchus oxyrinchus Mitchill, 1815). J Appl Ichthy 32(Suppl. 1):30–66

    Article  Google Scholar 

  • Hughes JM, Real KM, Marshall JC, Schmidt DJ (2012) Extreme genetic structure in a small-bodied freshwater fish, the purple spotted gudgeon, Mogurnda adspersa (Eleotridae). PLoS ONE 7:e40546. https://doi.org/10.1371/journal.pone.0040546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram EC, Peterson DL (2016) Annual spawning migrations of adult Atlantic sturgeon in the Altamaha River. Mar Coast Fish 8:595–606

    Article  Google Scholar 

  • Jarne P, Lagoda PGL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429

    Article  CAS  PubMed  Google Scholar 

  • Judd S (1905) History of Hadley: Including the Early History of Hatfield, South Hadley, Amherst and Granby, Massachusetts. H.R. Hunting and Company, Springfield

    Google Scholar 

  • Kahn DM, Fisher M (2012) Endangered Atlantic sturgeon in the Delaware River require higher standards for dissolved oxygen. Delaware Division of Fish and Wildlife, Dover

    Google Scholar 

  • Kahnle AW, Hattala KA, McKown K (2007) Status of Atlantic sturgeon (Acipenser oxyrinchus) of the Hudson River Estuary, New York, USA. Am Fish Soc Symp 56:347–364

    Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski ST, Manlove KR, Taper ML (2008) ONCOR: software for genetic stock identification. http://www.montana.edu/kalinowski/Software.htm

  • King TL, Lubinski BA, Spidle AP (2001) Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv Genet 2:103–119

    Article  CAS  Google Scholar 

  • Kocik J, Lipsky C, Miller T, Rago P, Shepherd G (2013) An Atlantic Sturgeon Population Index for ESA Management Analysis. U.S. Dept Commerce, Northeast Fish Sci Cent Ref Doc, 13–06

  • Limburg K, Waldman JR (2009) Dramatic declines in North Atlantic diadromous fishes. BioSci 59:955–965

    Article  Google Scholar 

  • May B, Krueger CC, Kincaid HL (1997) Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci 54:1542–1547

    Article  CAS  Google Scholar 

  • Moberg T, DeLucia M (2016) Potential impacts of dissolved oxygen, salinity and flow on successful recruitment of Atlantic sturgeon in the Delaware River. The Nature Conservancy, Philadelphia

    Google Scholar 

  • Moore JS, Harris LN, Tallman RF, Taylor EB (2013) The interplay between dispersal and gene flow in anadromous Arctic char (Salvelinus alpinus): implications for potential for local adaptation. Can J Fish Aquat Sci 70:1327–1338

    Article  Google Scholar 

  • Moyer GR, Sweka JA, Peterson DL (2012) Past and present processes influencing genetic diversity and effective population size in a natural population of Atlantic Sturgeon. Trans Am Fish Soc 141:56–67

    Article  Google Scholar 

  • NMFS (National Marine Fisheries Service) (2012) Endangered and threatened wildlife and plants; threatened and endangered status for distinct population segments of Atlantic sturgeon in the northeast region. Federal Register 77:24(6 February 2012):5880–5912

  • O’Leary SJ, Hice LA, Feldheim KA, Frisk MG, McElroy AE, Fast MD, Chapman DD (2013) Severe inbreeding and small effective number of breeders in a formerly abundant marine fish. PLoS ONE 8:e66126. https://doi.org/10.1371/journal.pone.0066126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong T-L, Stabile J, Wirgin I, Waldman JR (1996) Genetic divergence between Acipenser oxyrinchus oxyrinchus and A. o. desotoi as assessed by mitochondrial DNA sequencing analysis. Copeia 1996:464–469

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Panagiotopoulou H, Austin JD, Zalewska K, Gonciarz M, Czarnogórska K, Gawor J, Weglenski P, Popović D (2017) Microsatellite mutation rate in Atlantic sturgeon (Acipenser oxyrinchus). J Hered 108:686–692

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an—update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson D, Haley N, Bain M (2000) Evidence of declining recruitment of Atlantic Sturgeon in the Hudson River. N Am J Fish Manag 20:231–238

    Article  Google Scholar 

  • Peterson D, Schueller P, Devries R, Fleming J, Wirgin I, Grunwald C (2008) Annual run size and genetic characteristics of Atlantic Sturgeon in the Altamaha River, Georgia. Trans Am Fish Soc 137:393–401

    Article  Google Scholar 

  • Pipkin W (2017) Endangered sturgeon may run into trouble at Virginia power station. Chesapeake Bay Magazine. https://www.chesapeakebaymagazine.com/baybulletin/2017/11/19/endangered-sturgeon-may-run-into-trouble-at-virginia-power-station. Accessed 19 Nov 2017

  • Portnoy DS, McDowell JR, Musick JA, Graves JE (2009) Effective size closely approximates the census size in the heavily exploited western Atlantic population of the sandbar shark, Carcharhinus plumbeus. Conserv Genet 10:1697–1705

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Rice WW (1989) Analyzing tables of statistical tests. Evol 43:223–225

    Article  Google Scholar 

  • Rousset F (2007) Genepop’007: a complete re-implementation of the GENEPOP software for Window and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salisbury SJ, McCracken GR, Keefe D, Perry R, Ruzzante DE (2016) A portrait of a sucker using landscape genetics: how colonization and life history undermine the idealized dendritic metapopulation. Mol Ecol 25:4126–4145

    Article  PubMed  Google Scholar 

  • Savoy T, Maceda L, Roy NK, Peterson D, Wirgin I (2017) Evidence of natural reproduction of Atlantic sturgeon in the Connecticut River from unlikely sources. PLoS ONE 12(4):e0175085. https://doi.org/10.1371/journal.pone.0175085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schueller P, Peterson D (2010) Abundance and recruitment of juvenile Atlantic sturgeon in the Altamaha River, Georgia. Trans Am Fish Soc 139:1526–1535

    Article  Google Scholar 

  • Secor DH, Waldman JR (1999) Historical abundance of Delaware Bay Atlantic sturgeon and potential rate of recovery. Am Fish Soc Symp 23:203–216

    Google Scholar 

  • Shrimpton JM, DD Heath (2003) Census vs. effective population size in chinook salmon: large-and small-scale environmental perturbation effects. Mol Ecol 12:2571–2583

    Article  CAS  PubMed  Google Scholar 

  • Smith TIJ (1985) The fishery, biology, and management of Atlantic sturgeon, Acipenser oxyrhynchus, in North America. Environ Biol Fishes 14:61–72

    Article  CAS  Google Scholar 

  • Smith TIJ, Clugston JP (1997) Status and management of Atlantic sturgeon, Acipenser oxyrinchus, in North America. Environ Biol Fishes 48:335–346

    Article  Google Scholar 

  • Smith JA, Flowers HJ, Hightower JE (2015) Fall spawning of Atlantic sturgeon in the Roanoke River, North Carolina. Trans Am Fish Soc 144:48–54

    Article  Google Scholar 

  • Tallmon DA, Gregovich D, Waples RS, Baker CS, Jackson J, Taylor BL, Archer E, Martien KK, Allendorf FW, Schwartz MK (2010) When are genetic methods useful for estimating contemporary abundance and detecting population trends? Mol Ecol Resour 10:684–692

    Article  PubMed  Google Scholar 

  • Vaisl’ev VP (2009) Mechanisms of polyploid evolution in fish: polyploidy in sturgeons. In: Carmona R, Domezain A, Garcia-Gallego M, Hernando JA (eds) Biology, conservation, and sustainable development of sturgeon. Springer, Berlin, pp 97–117

    Chapter  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DMP (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellites data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Wakely J, Sargsyan O (2009) Extensions of the coalescent effective population size. Genetics 181:341–345

    Article  Google Scholar 

  • Waldman JR, Wirgin II (1998) Status and restoration options for Atlantic sturgeon in North America. Conserv Biol 12:631–638

    Article  Google Scholar 

  • Waldman JR, Hart JT, Wirgin II (1996) Stock composition of the New York Bight Atlantic sturgeon fishery based on analysis of mitochondrial DNA. Trans Am Fish Soc 125:364–371

    Article  CAS  Google Scholar 

  • Waldman JR, Grunwald C, Stabile J, Wirgin I (2002) Impacts of life history and biogeography on genetic stock structure in Atlantic Sturgeon, Acipenser oxyrinchus oxyrinchus, Gulf sturgeon A. oxyrinchus desotoi, and shortnose sturgeon, A. brevirostrum. J Appl Ichthy 18:509–518

    Article  Google Scholar 

  • Waldman JR, King T, Savoy T, Maceda L, Grunwald C, Wirgin I (2013) Stock origins of subadult and adult Atlantic sturgeon, Acipenser oxyrinchus, in a non-natal estuary, Long Island Sound. Estuar Coasts 36:257–267

    Article  CAS  Google Scholar 

  • Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size. Heredity 117:193–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waples R, Do C (2008) ldne a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8:753–756

    Article  Google Scholar 

  • Waples RS, Do C (2009) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189:633–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Waples RS, Luikart G, Faulkner JR, Tallman DA (2013) Simple life-history traits explain key effective size ratios across diverse taxa. Proc R Soc B 280:20131339

    Article  PubMed  PubMed Central  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Whippelhauser GS, Sulikowski J, Zydlewski GB, Altenritter MA, Kieffer M, Kinnison MT (2017) Movements of Atlantic Sturgeon of the Gulf of Maine inside and outside of the geographically defined distinct population segment. Mar Coast Fish 9:93–107

    Article  Google Scholar 

  • Wirgin I, Grunwald C, Stabile J, Waldman J (2007) Genetic evidence for relict Atlantic sturgeon stocks along the Mid-Atlantic coast of the USA. N Am J Fish Manag 27:1214–1229

    Article  Google Scholar 

  • Wirgin I, Maceda L, Grunwald C, King T (2015a) Population origin of Atlantic sturgeon bycaught in U.S. Atlantic coast fisheries. J Fish Biol 85:1251–1270

    Article  Google Scholar 

  • Wirgin I, Breece MW, Fox DA, Maceda L, Wark KW, King T (2015b) Origin of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus collected off the Delaware Coast during spring months. N Am J Fish Manag 35:20–30

    Article  Google Scholar 

  • Wirgin I, Roy NK, Maceda L, Mattson M (2018) DPS and population origin of subadult Atlantic sturgeon in the Hudson River. Fish Res 207:165–170

    Article  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431

    Google Scholar 

  • Yi S, Streelman JT (2005) Genome size is negatively correlated with effective population size in ray-finned fish. Trends Genet 21:643–646

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all of the students, scientists, and resource managers for their collections of Atlantic sturgeon that were the target of this study. We are also grateful for helpful reviews by Robin Waples and two anonymous reviewers. We also acknowledge a NOAA Fisheries Endangered Species Act Section 6 program grant for its support and the use of the Molecular Facilities Core of the NYU NIEHS Center Grant ES000260.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Waldman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldman, J., Alter, S.E., Peterson, D. et al. Contemporary and historical effective population sizes of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus. Conserv Genet 20, 167–184 (2019). https://doi.org/10.1007/s10592-018-1121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1121-4

Keywords

Navigation