Skip to main content

Advertisement

Log in

Genetic characterization of Western European noble crayfish populations (Astacus astacus) for advanced conservation management strategies

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

One central goal of conservation biology is to conserve the genetic diversity of species in order to protect their adaptive potential. The main objective of this study was to identify management units (MUs) for the threatened noble crayfish (Astacus astacus) in Western Europe by utilizing sequence and microsatellite analysis to determine populations in need of focused conservation programs. With the analysis of noble crayfish from 31 sampling sites from Belgium, France, The Netherlands and Germany, and further comparison of this data with a European-wide dataset, we propose four distinct MUs: the French Meuse (MU 1), the French Rhine (MU 2), the Belgian Scheldt and Meuse (MU 3) as well as populations from the French Seine (MU 4). This knowledge enables advanced A. astacus conservation management practises in these catchments by distinguishing between outbreeding and inbreeding populations and by preserving the maximum genetic diversity. When required, a high genetic diversity can be conserved by strengthen existing populations via stocking with populations that either bear the most common haplotype or population-specific private haplotypes in order to maintain recent and regional adaptions. Above all, stocking with populations that exhibit haplotypes from outside Western Europe should be avoided in these catchments. This study supports the preservation of the genetic diversity of noble crayfish in Western Europe and provides thus a proposition for advanced conservation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albrecht H (1983) Besiedlungsgeschichte und ursprüngliche holozäne Verbreitung der europäischen Flußkrebse (Decapoda: Astacidae). Spixiana 6:61–77

    Google Scholar 

  • Balzat N-H, Dussart A (1978) Guide de la Pêche en Ardenne. Duculot, Paris-Gembloux, pp 384

    Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300

    Google Scholar 

  • Bláha M, Žurovcová M, Kouba A, Policar T, Kozák P (2015) Founder event and its effect on genetic variation in translocated populations of noble crayfish (Astacus astacus). J Appl Genet 57:99–106

    Article  PubMed  Google Scholar 

  • Boets P, Lock K, Adriaens T, Mouton A, Goethals PLM (2012) Distribution of crayfish (Decapoda, Astacoidea) in Flanders (Belgium): an update. Belg J Zool 142(1):86–92

    Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Boulding EG (2008) Genetic diversity, adaptive potential, and population viability in changing environments. In: Carroll SC (ed) Fox conservation biology: evolution in action. Oxford University Press, New York, pp 199–219

    Google Scholar 

  • Buhay JE (2009) “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crustac Biol 29:96–110

    Article  Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623

    Article  CAS  PubMed  Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714

    Article  CAS  PubMed  Google Scholar 

  • Collas M, Julien C, Monnier D (2007) Note technique: La situation des écrevisses en France. Résultats des enquêtes nationales réalisées entre 1977 et 2006 par le Conseil Supérieur de la Pêche. Bull Fr de la Pêche Piscic 386:1–39

    Article  Google Scholar 

  • Costedoat C, Chappaz R, Barascud B, Guillard O, Gilles A (2006) Heterogeneous colonization pattern of European Cyprinids, as highlighted by the dace complex (Teleostei: Cyprinidae). Mol Phylogen Evol 41(1):127–148

    Article  CAS  Google Scholar 

  • Crandall KA, Fitzpatrick JF Jr (1996) Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Syst Biol 45(1):1–26

    Article  Google Scholar 

  • Culling MA, Janko K, Boron A, Vasil’ev P, Côté IM, Hewitt GM (2006) European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation. Mol Ecol 15:173–190

    Article  CAS  PubMed  Google Scholar 

  • Drummond A, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2011) GENEIOUS Pro v 5.0.3. (computer program). http://www.geneious.com

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4(2):359–361

    Article  Google Scholar 

  • Edsman L, Füreder L, Gherardi F, Souty-Grosset C (2010) Astacus astacus. IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. http://www.iucnredlist.org. Accessed 10 Feb 2015

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fourneau RO (2006) Initiation à la géomorphologie de la Wallonie, région d’Europe. Cercle des Naturalistes de Belgique asbl, pp 172

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC, Mendelson JR, Porton IJ, Ralls K, Ryder OA (2012) Implications of different species concepts for conserving biodiversity. Biol Conserv 153:25–31

    Article  Google Scholar 

  • Gouin N, Grandjean F, Souty-Grosset C (2006) Population genetic structure of the endangered crayfish Austropotamobius pallipes in France based on microsatellite variation: biogeographical inferences and conservation implications. Freshwater Biol 51:1369–1387

    Article  CAS  Google Scholar 

  • Gross R, Palm S, Kõiv K, Prestegaard T, Jussila J, Paaver T, Geist J, Kokko H, Karjalainen A, Edsman L (2013) Microsatellite markers reveal clear geographic structuring among threatened noble crayfish (Astacus astacus) populations in Northern and Central Europe. Conserv Genet 15:809–821

    Article  Google Scholar 

  • Gross R, Kõiv K, Pukk L, Kaldre K (2016) Development and characterization of novel tetranucleotide microsatellite markers in the noble crayfish (Astacus astacus) suitable for highly multiplexing and for detecting hybrids between the noble crayfish and narrow-clawed crayfish (A. leptodactylus). Aquaculture. doi:10.1016/j.aquaculture.2016.04.015  

    Google Scholar 

  • Gum B, Gross R, Kuehn R (2005) Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): evidence for secondary contact zones in central Europe. Mol Ecol 14:1707–1725

    Article  CAS  PubMed  Google Scholar 

  • Hantke R (1993) Flussgeschichte Mitteleuropas. Ferdinand Enke-Verlag, Stuttgart

    Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Holdich D (2002) Distribution of crayfish in Europe and some adjoining countries. Bull Fr Pêche Piscic 367:611–650

    Article  Google Scholar 

  • IUCN (2013) IUCN Red List of Threatened Species. Version 2013.2. http://www.iucnredlist.org. Accessed 2 Jan 2016

  • Jehin P (2006–2007) Rivières, étangs et pisciculture dans les Vosges du Nord avant la Révolution. Ann Sci Rés Bios Trans Vosges du Nord-Pfälzerwald 12:91–112

  • Jump AS, Marchant R, Peñuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Jussila J, Makkonen J, Vainikka A, Kortet R, Kokko H (2011) Latent crayfish plague (Aphanomyces astaci) infection in a robust wild noble crayfish (Astacus astacus) population. Aquaculture 321:17–20

    Article  Google Scholar 

  • Koese B, Soes M (2011) De Nederlandse rivierkreeften (Astacoidea, Parasacoidea). Entomologische Tabellen 6:107

    Google Scholar 

  • Kõiv K, Gross R, Paaver T, Kuehn R (2008) Isolation and characterization of first microsatellite markers for the noble crayfish, Astacus astacus. Conserv Genet 9:1703–1706

    Article  Google Scholar 

  • Kõiv K, Gross R, Paaver T, Hurt M, Kuehn R (2009) Isolation and characterization of 11 novel microsatellite DNA markers in the noble crayfish, Astacus astacus. Anim Genet 40:124–126

    Article  PubMed  Google Scholar 

  • Lerceteau-Köhler E, Schliewen U, Kopun T, Weiss S (2013) Genetic variation in brown trout Salmo trutta across the Danube, Rhine, and Elbe headwaters: a failure of the phylogeographic paradigm? BMC Evol Biol 13:176

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.0 (d16c). (computer program). http://www.lewis.eeb.uconn.edu/lewishome/software.html

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J et al (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89(11):108–122

    Article  Google Scholar 

  • Makkonen J, Kokko H, Jussila J (2015) Mitochondrial cytochrome oxidase I gene analysis indicates a restricted genetic background in Finnish noble crayfish (Astacus astacus) stocks. Knowl Manag Aquat Ecosyst 416:21

    Article  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Moritz C (1999) Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130:217–228

    Article  Google Scholar 

  • OIE (Office international des épizooties) (2016) Crayfish plague (Aphanomyces astaci). Chapter 2.2.1. In: World Organization for Animal Health (ed) Manual of diagnostic tests for aquatic animals 2016. Office International des épizooties, Paris, pp 101–118. http://www.oie.int/fileadmin/Home/eng/Health_standards/aahm/current/chapitre_aphanomyces_astaci.pdf. Accessed 20 June 2016

  • Ottburg F, Roessink I (2012) Europese rivierkreften in Nederland; vaststellen, veiligstellen, versterken en veilige leefgebieden. Wageningen, Alterra. Alterra-rapport 2341, pp 42

  • Pârvulescu L, Schrimpf A, Kozubíková E, Resino SC, Vrålstad T, Petrusek A, Schulz R (2012) Invasive crayfish and crayfish plague on the move: first detection of the plague agent Aphanomyces astaci in the Romanian Danube. Dis Aquat Org 98:85–94

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Rapid isolation of Mammalian DNA. In: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • SCBD (Secretariat of the Convention on Biological Diversity) (1992) Convention on biological diversity. http://www.cbd.int. Accessed 10 Feb 2014

  • Schrimpf A, Schulz H, Theissinger K, Pârvulescu L, Schulz R (2011) First large-scale genetic analysis of the vulnerable noble crayfish Astacus astacus reveals low haplotype diversity of Central European populations. Knowl Manag Aquat Ecosyst 401:35

    Article  Google Scholar 

  • Schrimpf A, Chucholl C, Schmidt T, Schulz R (2013) Crayfish plague agent detected in populations of the invasive North American crayfish Orconectes immunis (Hagen, 1870) in the Rhine River, Germany. Aquat Invasion 8(1):103–109

    Article  Google Scholar 

  • Schrimpf A, Theissinger K, Dahlem J, Maguire I, Pârvulescu L, Schulz H, Schulz R (2014) Phylogeography of noble crayfish (Astacus astacus) reveals multiple refugia. Freshwater Biol 59:761–776

    Article  CAS  Google Scholar 

  • Schulz R, Stucki T, Souty-Grosset C (2002) Roundtable session 4A. Management: reintroductions restocking. Bull Fr Pêche Piscic 367:917–922

    Article  Google Scholar 

  • Schulz H, Gross H, Dümpelmann C, Schulz R (2008) Flusskrebse Deutschlands. In: Füreder L (ed) Flusskrebse: Biologie–Ökologie–Gefährdung. Folio, Wien, pp 71–81

    Google Scholar 

  • Skuza L, Keszka S, Panicz R, Šmietana P (2016) Molecular characterization of the noble crayfish (Astacus astacus L.) population from Pomeranian lakes (north-western Poland) based on mitochondrial DNA. Knowl Manag Aquat Ecosyst 417:3

    Google Scholar 

  • Souty-Grosset C, Grandjean F (2009) Populations translocation events and impact on natural habitats. In: Gherardi F, Corti C, Gualtieri M (eds) Biodiversity conservation and habitat management, encyclopaedia of life support systems. EOLSS Publisherc Co. Ltd., Oxford

    Google Scholar 

  • Svoboda J, Mrugała A, Kozubíková-Balcarová E, Petrusek A (2016) Hosts and transmission of the crayfish plague pathogen Aphanomyces astaci: a review. J Fish Dis. doi:10.1111/jfd.12472

    PubMed  Google Scholar 

  • Tilmans M, Mrugała A, Svoboda J, Engelsma MY, Petie M, Soes DM, Nutbeam-Tuffs S, Oidtmann B, Roessink I, Petrusek A (2014) Survey of the crayfish plague pathogen presence in The Netherlands reveals a new Aphanomyces astaci carrier. J Invertebr Pathol 120:74–79

    Article  CAS  PubMed  Google Scholar 

  • UICN (2012) La liste rouge des espèces menacées en France: Crustacés d’eau douce de France métropolitaine. Dossier de presse du 7 juin 2012, pp 25. http://www.uicn.fr/Liste-rouge-crustaces-d-eau-douce.html. Accessed 26 Aug 2013

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Viljamaa-Dirks S, Heinikainen S, Nieminen M, Vennerstrom P, Pelkonen S (2011) Persistent infection by crayfish plague Aphanomyces astaci in a noble crayfish population—a case report. Bull Eur Assoc Fish Pathol 31:182–188

    Google Scholar 

  • Vonlanthen P, Excoffier I, Bittner D, Persat H, Neuenschwander S, Largiadèr CR (2007) Genetic analysis of potential postglacial watershed crossings in Central Europe by the bullhead (Cottus gobio L.). Mol Ecol 16(21):4572–4584

    Article  CAS  PubMed  Google Scholar 

  • Waser NM, Price MV (1994) Crossing distance effects in Delphinium nelsonii: outbreeding and inbreeding depression in progeny fitness. Evol Int J org Evol 48:842–852

    Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Woodford MH, Rossiter PB (1993) Disease risks associated with wildlife translocation projects. Rev Sci Tech Int Off Epizoot 12(1):115–135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was initiated by the Service Public de Wallonie (Département de l’Étude du Milieu naturel et agricole, Cellule Hydrobiologie and Département de la Nature et des Forêts, Service de la Pêche) which funded the analysis of most of the samples. For their kind permission to sample crayfish population we express our warmest thanks to His Highness the Prince Charles-Antoine de Ligne, to Count Bernard de Broqueville, to Serge Kanjiester, Philippe Vastapane, Edouard de Lovinfosse, Danielle and Marc Ferauge, Luc Gailly, Jean Plapied, the Walcourt town council and Jean-Pierre Georgin (Mirwart fish farm). We thank Susanne Vaessen (RWTH Aachen), Marcus Zocher and Manfred Aletsee (Naturschutzstation Aachen) as well as Alain Gérard, Sébastien Adin, Christian Guillaume, Frédéric Bernier (ONEMA, département des Ardennes) and Didier Druart and Juliette Jarry (ONEMA, department de la Haute-Marne) for their valuable help in sampling and Jennifer Dahlem (University Koblenz-Landau) for help in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schrimpf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix 1

See Table 4.

Table 4 Pairwise FST- and ΦST-values between sampling sites calculated with ARLEQUIN, v. 3.11

Appendix 2

Detailed discussion about the stocking history of the analyzed populations

Our study benefits from detailed information about the history of the studied populations. The differentiated Hap41 found in the Meisenthal hatchery (F1) and in a natural population in the Rhine catchment in France (F7, Lemberg) indicates a stocking event because this haplotype and related ones are frequently distributed in the Croatian Danube catchment (Hap 41 in Fig. 6 and in Schrimpf et al. 2014). A parallel evolution of Hap41 is highly unlikely because it differs from the most common haplotype Hap01 by 10 mutations. The hatchery (F1) was founded with crayfish from the Meisenthal brook in the Vosges, where ponds were dug out in the past to supply power to the local glass industry (Franckhauser, personal communication). We thus assumed that the population from the hatchery was stocked with Danubian crayfish. In its geographic vicinity, sampling site F6 (Sturzelbronn in the Vosges, Fig. 1) is located, which belongs to the same MU (Fig. 4). Noble crayfish were present in the former Sturzelbronn abbey estate already in 1594 and 1789 (Jehin 20062007). Therefore, it is most probable that population F6, characterized by the Western-European haplotype Hap31, existed here already historically. It should be preserved by priority. The presence of F6 should explain the presence of both Hap31 and Hap41 in the F7 population. Because noble crayfish stockings likely occurred many times in this region more natural populations from the French Rhine should be analysed to estimate the influence of stockings from the past.

Although some of the sampled populations, especially those harboured in water-filled quarries such as B6 and B9 on the one hand and B11 and B17 on the other hand (all Scheldt catchment) live only a few hundred meters apart from each other in a same locality, they were stocked independently (Table 1), from a distinct origin and in distinct quarries without any exchange between them. While the origin of B9 and B11 is unknown, the origin of B17 is a pond in the Haine-Scheldt catchment. However, as this population may have been stocked in past times, its very first origin is unknown. Interestingly, these stocked populations and the fish farm B3 (Meuse catchment) all carried the haplotype Hap35, which was previously found in the Romanian Danube catchment (Schrimpf et al. 2014). However, since haplotype Hap35 differed by only one base pair exchange from Hap01 it is possible that Hap35 has evolved independently twice. In this case the occurrence in both regions would not necessarily be a sign for a translocation of noble crayfish from Romania to Belgium, but could be an indication of a relationship between the Belgian populations. According to the msat data, the respective Belgian populations (B3, B9, B11, B17) were distinct from noble crayfish from the Black Sea catchment, but they did show some similarity to the remaining noble crayfish from central and Western Europe (Fig. 3). Especially interesting is population B11, which additionally holds two private haplotypes (Hap47, Hap48), that have not been found elsewhere in Europe before. The private haplotypes explain the high ΦST-values between B11 and all other populations (Table 4 in Appendix 1). As long as we cannot provide evidence for an alien origin of these private haplotypes we recommend special protection of population B11 in the Scheldt catchment.

Population B13 was highly differentiated from all other populations (high Φ-values and FST-values, Table 4; Figs. 4, 5), even from the geographically very close and presumably autochthonous population B18. All 10 sequenced individuals of population B13 carried a haplotype (Hap40, Table 2) that was previously found in the Romanian Danube catchment (Schrimpf et al. 2014). Interestingly, this population was stocked with crayfish purchased in a Belgian food store in the 1970s (S. Kanjester, personal communication; Table 1). Since both the historic record and the genetic results indicate an allochthonous origin, population B13, along with other populations with allochthonous haplotypes (populations F1, F7), should not be used for further stockings in Belgium. Also other crayfish with Danubian (see Schrimpf et al. 2014) or other foreign origin should not be used.

Small isolated populations like the last known Dutch noble crayfish population (NL) are at high risk from inbreeding depression (Frankham et al. 2012). Individuals in small populations have a lower fitness and the extinction probability is increased especially in changing environments (Willi et al. 2006). Haplotype and allele diversities are indeed already low in the Dutch population (Table 2). Additionally, as for the Belgian and the French Oise catchment populations, the extinction risk for noble crayfish in The Netherlands is especially high due to the wide distribution of American crayfish species (Koese and Soes 2011) and the crayfish plague (Tilmans et al. 2014). Consequently, this population should be a focus of special management.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schrimpf, A., Piscione, M., Cammaerts, R. et al. Genetic characterization of Western European noble crayfish populations (Astacus astacus) for advanced conservation management strategies. Conserv Genet 18, 1299–1315 (2017). https://doi.org/10.1007/s10592-017-0981-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0981-3

Keywords

Navigation