Skip to main content

Advertisement

Log in

Development of genetic structure in a heterogeneous landscape over a short time frame: the reintroduced Asiatic wild ass

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Understanding the dynamics of genetic structures which arise during a population’s range expansion can be applied to the conservation of recovering species and species that are shifting their range. Theoretical models, supported by several empirical findings, have indicated that fine-scaled genetic structure can arise at the wave front of a spatially expanding population. We explored the development of population genetic structure in the reintroduced Asiatic wild ass (Equus hemionus) in Israel, four generations after the onset of reintroduction, during which the population experienced demographic growth and range expansion over a complex landscape. Blood samples of the ‘founding-population’ and fecal samples of the ‘wild-population’, collected throughout the range of distribution were analyzed using mtDNA markers. Fecal samples were delimitated to ‘subpopulations’ according to their geographical locations. The “East” subpopulation, at the wave front of the wild population’s distribution, was found to be significantly different than the rest of the population (AMOVA, ΦST = 0.13, P = 0.04). These findings were supported by an FST-test, Spatial-AMOVA and a Barrier analysis. The “East” region is characterized by high quality habitat patches and low landscape connectivity to the rest of the area, which possibly led to its relative isolation. The “East” subpopulation was probably initiated following a founder-effect of dispersers from the release area, which remained in the ‘new area’, due to its high habitat quality. This genetic structure, though it might diminish over time due to gene flow and additional range expansion, has the potential of facilitating adaptive evolution and thereby affecting the population’s long term persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Auger-Rozenberg MM, Boivin T, Magnoux E et al (2012) Inferences on population history of a seed chalcid wasp: invasion success despite a severe founder effect from an unexpected source population. Mol Ecol 21:6086–6103. doi:10.1111/mec.12077

    Article  PubMed  Google Scholar 

  • Austerlitz F, Jung-Muller B, Godelle B, Gouyon P-H (1997) Evolution of coalescence times, genetic diversity and structure during colonization. Theor Popul Biol 51:148–164. doi:10.1006/tpbi.1997.1302

    Article  Google Scholar 

  • Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995

    Article  Google Scholar 

  • Boessenkool S, Star B, Waters JM, Seddon PJ (2009) Multilocus assignment analyses reveal multiple units and rare migration events in the recently expanded yellow-eyed penguin (Megadyptes antipodes). Mol Ecol 18:2390–2400. doi:10.1111/j.1365-294X.2009.04203.x

    Article  PubMed  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  PubMed  CAS  Google Scholar 

  • Braunisch V, Segelbacher G, Hirzel AH (2010) Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach. Mol Ecol 19:3664–3678. doi:10.1111/j.1365-294X.2010.04703.x

    Article  PubMed  Google Scholar 

  • Bridle JR, Vines TH (2007) Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol 22:140–147. doi:10.1016/j.tree.2006.11.002

    Article  PubMed  Google Scholar 

  • Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216. doi:10.1146/annurev.ecolsys.110308.120324

    Article  Google Scholar 

  • Burton OJ, Travis JMJ (2008) The frequency of fitness peak shifts is increased at expanding range margins due to mutation surfing. Genetics 179:941–950. doi:10.1534/genetics.108.087890

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark RW, Brown WS, Stechert R, Zamudio KR (2010) Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes. Conserv Biol 24:1059–1069. doi:10.1111/j.1523-1739.2009.01439.x

    Article  PubMed  Google Scholar 

  • Collinge SK, Forman RTT (1998) A conceptual model of land conversion processes: predictions and evidence from a microlandscape experiment with grassland insects. Oikos 82:66–84

    Article  Google Scholar 

  • Coulon A, Cosson JF, Angibault JM et al (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850. doi:10.1111/j.1365-294X.2004.02253.x

    Article  PubMed  CAS  Google Scholar 

  • Danin A (1999) Desert rocks as plant refugia in the Near East. Bot Rev 65:93–170

    Article  Google Scholar 

  • Davidson A, Carmel Y, Bar-David S (2013) Characterizing wild ass pathways using a non-invasive approach: applying least-cost path modelling to guide field surveys and a model selection analysis. Landsc Ecol 28:1465–1478

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  PubMed  CAS  Google Scholar 

  • Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci USA 101:975–979. doi:10.1073/pnas.0308064100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Epps CW, Palsbøll PJ, Wehausen JD et al (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Esri (2011) ArcGIS Desktop: Release 10. Redlands CA

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351. doi:10.1016/j.tree.2008.04.004

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to Human Mitochondrial DNA Restriction Data. Genetics 131:479–491

    PubMed  CAS  PubMed Central  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic Consequences of Range Expansions. Annu Rev Ecol Evol Syst 40:481–501. doi:10.1146/annurev.ecolsys.39.110707.173414

    Article  Google Scholar 

  • Grativol AD, Ballou JD, Fleischer RC (2001) Microsatellite variation within and among recently fragmented populations of the golden lion tamarin (Leontopithecus rosalia). Conserv Genet 2:1–9

    Article  CAS  Google Scholar 

  • Groves CP (1986) The taxonomy, distribution and adaptations of recent equids. Equids Anc World 1:11–65

    Google Scholar 

  • Guardiola M, Frotscher J, Uriz MJ (2011) Genetic structure and differentiation at a short-time scale of the introduced calcarean sponge Paraleucilla magna to the western Mediterranean. Hydrobiologia 687:71–84. doi:10.1007/s10750-011-0948-1

    Article  Google Scholar 

  • Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indices of landscape spatial pattern. Landsc Ecol 7:101–110. doi:10.1007/BF02418941

    Article  Google Scholar 

  • Hedrick PW (2011) Genetics of populations, 4th edition. Jones & Bartlett Learning, Boston

    Google Scholar 

  • Hofer T, Ray N, Wegmann D, Excoffier L (2009) Large allele frequency differences between human continental groups are more likely to have occurred by drift during range expansions than by selection. Ann Hum Genet 73:95–108. doi:10.1111/j.1469-1809.2008.00489.x

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity (Edinb) 77:282–291

    Article  Google Scholar 

  • IUCN SSC (2001) IUCN Red List categories and criteria: version 3.1. Prepared by IUCN Species Survival Communication

  • Keller I, Largiadèr CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc B Biol Sci 270:417–423

    Article  CAS  Google Scholar 

  • Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23:482–490. doi:10.1093/molbev/msj057

    Article  PubMed  CAS  Google Scholar 

  • Kohn MH, York EC, Kamradt DA et al (1999) Estimating population size by genotyping faeces. Proc Biol Sci 266:657–663. doi:10.1098/rspb.1999.0686

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191. doi:10.1111/j.1365-294X.2010.04808.x

    Article  PubMed  CAS  Google Scholar 

  • Latch EK, Scognamillo DG, Fike JA et al (2008) Deciphering ecological barriers to North American River Otter (Lontra canadensis) gene flow in the Louisiana landscape. J Hered 99:265

    Article  PubMed  CAS  Google Scholar 

  • Lowe WH, McPeek MA, Likens GE, Cosentino BJ (2008) Linking movement behaviour to dispersal and divergence in plethodontid salamanders. Mol Ecol 17:4459–4469. doi:10.1111/j.1365-294X.2008.03928.x

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manel S, Poncet BN, Legendre P et al (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835. doi:10.1111/j.1365-294X.2010.04716.x

    Article  PubMed  Google Scholar 

  • Manni F, Gue E, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2012) FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Univ. Massachusettes, Amherst, MA. URL http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Merilä J, Sheldon BC, Kruuk LE (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112–113:199–222

    Article  PubMed  Google Scholar 

  • Michod R (1982) The theory of kin selection. Annu Rev Ecol Syst 13:23–55

    Article  Google Scholar 

  • Miller B, Ralls K, Reading RP et al (1999) Biological and technical considerations of carnivore translocation: a review. Anim Conserv 2:59–68. doi:10.1111/j.1469-1795.1999.tb00049.x

    Article  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649. doi:10.1111/j.1365-294X.2010.04723.x

    Article  PubMed  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, Columbia

    Google Scholar 

  • Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640

    PubMed  CAS  PubMed Central  Google Scholar 

  • Neuwald JL, Templeton AR (2013) Genetic restoration in the eastern collared lizard under prescribed woodland burning. Mol Ecol 22:3666–3679. doi:10.1111/mec.12306

    Article  PubMed  Google Scholar 

  • Nezer O (2011) The use of predicted distribution model of the Asiatic wild ass (Equus hemionus) for sustainable management of the Negev and the Arava. Technion, Institute of Technology

  • Peakall R, Smouse PE (2010) GenAlEx 6.41: Genetic analysis in Excel. Population genetic software for teaching and research. The Australian National University website (Canberra, Australia)

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193. doi:10.1111/j.1523-1739.1988.tb00169.x

    Article  Google Scholar 

  • Ramakrishnan AP, Musial T, Cruzan MB (2010) Shifting dispersal modes at an expanding species’ range margin. Mol Ecol 19:1134–1146. doi:10.1111/j.1365-294X.2010.04543.x

    Article  PubMed  Google Scholar 

  • Renan S, Speyer E, Shahar N et al (2012) A factorial design experiment as a pilot study for noninvasive genetic sampling. Mol Ecol Resour 12:1040–1047. doi:10.1111/j.1755-0998.2012.03170.x

    Article  PubMed  CAS  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H et al (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Saltz D, Rubenstein DI (1995) Population-dynamics of a reintroduced Asiatic wild ass (Equus Hemionus) herd. Ecol Appl 5:327–335

    Article  Google Scholar 

  • Saltz D, Rowen M, Rubenstein DI (2000) The effect of space-use patterns of reintroduced Asiatic wild ass on effective population size. Conserv Biol 14:1852–1861

    Article  Google Scholar 

  • Santini A, Lucchini V, Fabbri E, Randi E (2007) Ageing and environmental factors affect PCR success in wolf (Canis lupus) excremental DNA samples. Mol Ecol Notes 7:955–961

    Article  CAS  Google Scholar 

  • Sarrazin F, Barbault R (1996) Reintroduction: challenges and lessons for basic ecology. Trends Ecol Evol 11:474–478

    Article  PubMed  CAS  Google Scholar 

  • Schumaker NH (1996) Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225

    Article  Google Scholar 

  • Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21:303–312. doi:10.1111/j.1523-1739.2006.00627.x

    Article  PubMed  Google Scholar 

  • Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Short KH, Petren K (2011) Fine-scale genetic structure arises during range expansion of an invasive gecko. PLoS One 6:e26258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sinai Y (1994) A program for selecting individuals from a breeding core for reintroduction Equus heminous in Hai-Bar Yotvata. The Hebrew University

  • Spear SF, Storfer A (2008) Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests. Mol Ecol 17:4642–4656. doi:10.1111/j.1365-294X.2008.03952.x

    Article  PubMed  Google Scholar 

  • Speyer E (2012) Preservation of genetic diversity in a reintroduced population: the Asiatic wild ass in the Negev. Ben-Gurion University of the Negev

  • Stern E, Gradus Y, Meir A, et al. (1986) Atlas of the Negev. Department of Geography, Ben-Gurion University of the Negev

  • Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514. doi:10.1111/j.1365-294X.2010.04691.x

    Article  PubMed  Google Scholar 

  • Storz J (1999) Genetic consequences of mammalian social structure. J Mammal 80:553–569

    Article  Google Scholar 

  • Sugg D, Chesser R (1996) Population genetics meets behavioral ecology. Trends Ecol Evol 11:338–342

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR (2008) The reality and importance of founder speciation in evolution. BioEssays 30:470–479. doi:10.1002/bies.20745

    Article  PubMed  Google Scholar 

  • Templeton AR, Robertson RJ, Brisson J, Strasburg J (2001) Disrupting evolutionary processes: the effect of habitat fragmentation on collared lizards in the Missouri Ozarks. Proc Natl Acad Sci USA 98:5426–5432. doi:10.1073/pnas.091093098

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • The MathWorks Inc. (2010) version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19. doi:10.1034/j.1600-0706.2000.900102.x

    Article  Google Scholar 

  • Travis JMJ, Muenkemueller T, Burton OJ (2010) Mutation surfing and the evolution of dispersal during range expansions. J Evol Biol 23:2656–2667. doi:10.1111/j.1420-9101.2010.02123.x

    Article  PubMed  CAS  Google Scholar 

  • Vilà C, Leonard JA, Gotherstrom A et al (2001) Widespread origins of domestic horse lineages. Science 291:474–477

    Article  PubMed  Google Scholar 

  • Vynne C, Baker MR, Breuer ZK, Wasser SK (2012) Factors influencing degradation of DNA and hormones in maned wolf scat. Anim Conserv 15:184–194

    Article  Google Scholar 

  • Wang J, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wegmann D, Currat M, Excoffier L (2006) Molecular diversity after a range expansion in heterogeneous environments. Genetics 174:2009–2020. doi:10.1534/genetics.106.062851

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (N Y) 38:1358–1370. doi:10.2307/2408641

    Google Scholar 

  • White TA, Perkins SE, Heckel G, Searle JB (2013) Adaptive evolution during an ongoing range expansion: the invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol 22:2971–2985. doi:10.1111/mec.12343

    Article  PubMed  CAS  Google Scholar 

  • With KA, Cadaret SJ, Davis C (1999) Movement responses to patch structure in experimental fractal landscapes. Ecology 80:1340–1353

    Article  Google Scholar 

  • Wright S (1949) The genetical structure of populations. Ann Eugen 15:323–354. doi:10.1111/j.1469-1809.1949.tb02451.x

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution (N Y) 19:395–420

    Google Scholar 

Download references

Acknowledgments

We would like to thank Oded Nezer, Edith Speyer, Sharon Renan, Naama Shahar, Amos Bouskila, Gili Greenbaum, Tali Brunner, Alejandro Centeno-Cuadros, David Saltz, Yaron Ziv and Gal Vine for their valuable contributions to this study. This research was supported by the United States-Israel Binational Science Foundation grant 2009296 awarded to S. Bar-David and A.R. Templeton and by the Israel Nature and Park Authority. TG was supported by a scholarship from the Albert Katz International School for Desert Studies, the Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel. This is publication 837 of the Mitrani Department of Desert Ecology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Gueta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueta, T., Templeton, A.R. & Bar-David, S. Development of genetic structure in a heterogeneous landscape over a short time frame: the reintroduced Asiatic wild ass. Conserv Genet 15, 1231–1242 (2014). https://doi.org/10.1007/s10592-014-0614-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0614-z

Keywords

Navigation