Skip to main content

Advertisement

Log in

Genetic data confirm critical status of the reintroduced Dinaric population of Eurasian lynx

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Eurasian lynx (Lynx lynx) reintroduction to the Dinaric Mountains is considered one of the most successful reintroductions of a large predator. Six reintroduced animals founded the population, which rapidly expanded from Slovenia, through Croatia, and all the way to Bosnia and Herzegovina. However, a decrease of the population size has been observed during the last 10–15 years. Considering that possible inbreeding depression would be additive to threats like poaching, traffic mortality and prey base depletion, another extinction of this species from the Dinaric Mountains is a real possibility. We analyzed 204 samples collected between 1979 and 2010 using twenty microsatellite loci and 900-bp mitochondrial DNA control region sequence to evaluate conservation genetics aspects of this endangered population. Both markers confirmed low genetic variability of the Dinaric lynx population, and considerable effective inbreeding (0.3) compared to the source Carpathian population. Our analysis of effective population size and microsatellite variability supported field observations of decreasing population number. As a natural recolonization is a very remote possibility, we recommend population augmentation from a large source population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JR, Waits LP (2007) An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conserv Genet 8:123–131

    Article  CAS  Google Scholar 

  • Barker JSF (2011) Effective population size of natural populations of Drosophila buzzatii, with a comparative evaluation of nine methods of estimation. Mol Ecol 20:4452–4471

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Andrén H, Hansson B, Pedersen HC, Sand H, Sejberg D, Wabakken P, Åkesson M, Liberg O (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS One 1:e72. doi:10.1371/journal.pone.0000072

    Article  PubMed  Google Scholar 

  • Breitenmoser U, Breitenmoser-Wursten C, Capt S (1998) Re-introduction and present status of lynx (Lynx lynx) in Switzerland. Hystrix 10:17–30

    Google Scholar 

  • Breitenmoser-Würsten C, Obexer-Ruff G (2003) Population and conservation genetics of two re-introduced lynx (Lynx lynx) populations in Switzerland: a molecular evaluation 25 years after translocation. Progress report, KORA Bericht, Bern

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Butler JM, David VA, O’Brien SJ, Menotti-Raymond M (2002) The MeowPlex: a new DNA test using tetranucleotide STR markers for the domestic cat. Profiles DNA 5:7–10

    Google Scholar 

  • Carmichael LE, Clark W, Strobeck C (2000) Development and characterization of microsatellite loci from lynx (Lynx canadiensis), and their use in other felids. Mol Ecol 9:2197–2199

    Google Scholar 

  • Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205

    Article  PubMed  CAS  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  PubMed  CAS  Google Scholar 

  • Clark JD, Huber D, Servheen C (2002) Bear reintroductions: lessons and challenges: invited paper. Ursus 13:335–345

    Google Scholar 

  • Čop J (1987) Propagation pattern of re-introduced population of lynx (Lynx lynx L) in Yugoslavia (1973 Slovenia—Kocevsko) and its impact on the ungulate community. In: Atti del convegno Reintroduzione dei predatori nele aree protette. Torino Italy, pp 83–91

  • Čop J, Frković A (1998) The reintroduction of the lynx in Slovenia and its present status in Slovenia and Croatia. Hystrix 10:65–76

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    Google Scholar 

  • Davoli F, Schmidt K, Kowalczyk R, Randi E (2012) Hair snaring and molecular genetic identification for reconstructing the spatial structure of Eurasian lynx populations. Mammal Biol. doi:10.1016/j.mambio.2012.06.003

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Frankham R (2009) Genetic considerations in reintroduction programmes for top-order, terrestrial predators. In: Hayward MW, Somers M (eds) Reintroduction of top-order predators. Blackwell, Oxford, pp 371–382

    Chapter  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Animal Conserv 1:69–70

    Article  Google Scholar 

  • Frković A (2001) Ris (Lynx lynx L.) u Hrvatskoj—naseljavanje, odlov i brojnost (1974–2000). Šumarski list 11–12:625–634

    Google Scholar 

  • Gillespie JH (2004) Population genetics, a concise guide, 2nd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gomerčić T, Gužvica G, Đuras Gomerčić M, Frković A, Pavlović D, Kusak J, Sindičić M, Huber Đ (2009) Variation in teeth number, teeth and skull disorders in Eurasian lynx, Lynx lynx from Croatia. Folia Zool 58:57–65

    Google Scholar 

  • Gomerčić T, Sindičić M, Đuras Gomerčić M, Gužvica G, Frković A, Pavlović D, Kusak J, Galov A, Huber Đ (2010) Cranial morphometry of the Eurasian lynx (Lynx lynx L.) from Croatia. Vet Arch 80:393–410

    Google Scholar 

  • Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3. http://www.unil.ch/izea/softwares/fstat.html Updated from Goudet (1995)

  • Gugolz D, Bernasconi MV, Breitenmoser-Würsten C, Wandeler P (2008) Historical DNA reveals the phylogenetic position of the extinct Alpine lynx. J Zool (Lond) 275:201–208

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/97/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hellborg L, Walker CW, Rueness EK, Stacy JE, Kojola I, Valdmann H, Vila C, Zimmermann B, Jakobsen KS, Ellegren H (2002) Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis. Conserv Genet 3:97–111

    Article  CAS  Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck in an introduced, insular population of elk. Conserv Genet 11:139–147

    Article  Google Scholar 

  • Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M, Belden RC, Mcbride R, Jansen D, Lotz M, Shindle D, Howard J, Wildt DE, Penfold LM, Hostetler JA, Oli MK, O’Brien SJ (2010) Genetic restoration of the Florida panther. Science 24:1641–1645

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keller LF, Biebach I, Ewing SR, Hoeck PEA (2012) The genetics of reintroductions: inbreeding and genetic drift. In: Ewen JG, Armstrong DP, Parker KA, Seddon PJ (eds) Reintroduction biology: integrating science and management. Blackwell, Oxford, pp 360–394

    Chapter  Google Scholar 

  • Koritnik M (1974) Še nekaj o risu. Lovec 67:198–199

    Google Scholar 

  • Kos F (1928) Ris (Lynx lynx) na ozemlju etnografske Slovenije. Glasnik muzejskega društva za Slovenijo 1:57–72

    Google Scholar 

  • Koubek P, Červený J (1996) A synopsis of lynxes trapped in Slovakia and re-introduced to certain countries in Europe. Acta Sc Nat Brno 30:42–43

    Google Scholar 

  • Lande R (1995) Mutation and conservation. Conserv Biol 9:782–791

    Article  Google Scholar 

  • Lopez JV, Cevario S, O’Brien SJ (1996) Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33:229–246

    Article  PubMed  CAS  Google Scholar 

  • Luikart G, Ryman N, Tallmon D, Schwartz M, Allendorf F (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Lynch M, Conery J, Bürger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518

    Article  Google Scholar 

  • MacDonald DW (2009) Lessons learnt and plans laid: seven awkward questions for the future of reintroductions. In: Hayward MW, Somers M (eds) Reintroduction of top-order predators. Blackwell, Oxford, pp 371–387

    Google Scholar 

  • Menotti-Raymond M, David VA, Lyons LA, Schäffer AA, Tomlin JF, Hutton MK, O'Brien SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23

    Google Scholar 

  • Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553

    Article  PubMed  CAS  Google Scholar 

  • Miller C, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366

    PubMed  Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed  Google Scholar 

  • Miquel C, Bellemain E, Poillot C, Bessiére J, Durand A, Taberlet P (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988

    Article  Google Scholar 

  • Mirić D (1978) Ausrottungsgeschichte des Luchses auf der Balkanhalbinsel. In: Wotischkowsky U (ed) Der Luchs: Erhaltung und Wiedereinburgerung in Europa. Bernhard, Mammendorf, pp 19–24

    Google Scholar 

  • Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Phillipsen IC, Funk WC, Hoffman EA, Monsen KJ, Blouin MS (2011) Comparative analyses of effective population size within and among species: ranid frogs as a case study. Evolution 65:2927–2945

    Article  PubMed  Google Scholar 

  • Polanc P, Sindičić M, Jelenčič M, Gomerčić T, Kos I, Huber Đ (2011) Genotyping success of historical Eurasian lynx (Lynx lynx L.) samples. Mol Ecol Resour 12:293–298

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Ratkiewicz M, Matosiuk M, Kowalczyk R, Konopiski MK, Okarma H, Ozolins J, Männil P, Ornicans A, Schmidt K (2012) High levels of population differentiation in Eurasian lynx at the edge of the species’ western range in Europe revealed by mitochondrial DNA analyses. Anim Conserv. doi:10.1111/j.1469-1795.2012.00556.x

    Google Scholar 

  • Reed DH, Lowe E, Briscoe DA, Frankham R (2003) Inbreeding and extinction: effects of rate of inbreeding. Conserv Genet 4:405–410

    Article  CAS  Google Scholar 

  • Robinson JD, Moyer GR (2012) Linkage disequilibrium and effective population size when generations overlap. Evol Appl. doi:10.1111/j.1752-4571.2012.00289.x

    PubMed  Google Scholar 

  • Rueness EK, Jorde PE, Hellborg L, Stenseth NC, Ellegren H, Jakobsen KS (2003) Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx. Mol Ecol 12:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KR, Kowalczyk J, Ozolins P, Männi L, Fickel J (2009) Genetic structure of the Eurasian lynx population in north–eastern Poland and the Baltic states. Conserv Genet 10:497–501

    Article  Google Scholar 

  • Schmidt K, Ratkiewicz M, Konopinski MK (2011) The importance of genetic variability and population differentiation in the Eurasian lynx Lynx lynx for conservation, in the context of habitat and climate change. Mammal Rev 41:112–124

    Article  Google Scholar 

  • Sindičić M, Sinanović N, Majić Skrbinšek A, Huber Đ, Kunovac S, Kos I (2010) Legal status and management of the Dinaric lynx population. Veterinaria 58:229–238

    Google Scholar 

  • Sindičić M, Gomerčić T, Galov A, Polanc P, Huber Đ, Slavica A (2012) Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region. Mitochondrial DNA 23:201–207

    Article  PubMed  Google Scholar 

  • Skrbinšek T, Jelenčič M, Waits L, Kos I, Jerina K, Trontelj P (2012) Monitoring the effective population size of a brown bear (Ursus arctos) population using new single-sample approaches. Mol Ecol 21:862–875

    Article  PubMed  Google Scholar 

  • Spong G, Hellborg L (2002) A near: extinction event in lynx: do microsatellite data tell the tale? Conserv Ecol 6:15

    Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  PubMed  CAS  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) Onesamp: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Valiére N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Google Scholar 

  • Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256

    Article  Google Scholar 

  • von Arx M, Breitenmoser-Würsten C, Zimmermann F, Breitenmoser U (2004) Status and conservation of the Eurasian lynx (Lynx lynx) in 2001. KORA Bericht no. 19, Muri

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  PubMed  CAS  Google Scholar 

  • Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89:135–153

    Article  PubMed  CAS  Google Scholar 

  • Wang J (2011) Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol 11:141–145

    Article  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  Google Scholar 

  • Ward RH, Frazier BL, Dew-Jager K, Paabo S (1991) Extensive mitochondrial diversity within a single Amerindian tribe. Proc Natl Acad Sci USA 88:8720–8724

    Article  PubMed  CAS  Google Scholar 

  • Williamson JE, Huebinger RM, Sommer JA, Louis EE Jr, Barber RC (2002) Development and cross-species amplification of 18 microsatellite markers in the Sumatran tiger (Panthera tigris sumatrae). Mol Ecol Notes 2:110–112

    Google Scholar 

  • Wu X, Zheng T, Jiang Z, Wei L (2007) The mitochondrial genome structure of the clouded leopard (Neofelis nebulosa). Genome 50:252–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Vedran Slijepčević, Miha Krofel, Josip Tomaić, Josip Kusak, Franc Kljun, Marko Jonozovič, Hubert Potočnik and Ivan Kos for their help with obtaining the samples. Carlos Fernandes gave us valuable comments for data analysis. This research was in part supported by the Interreg IIIA project “Transboundary cooperation in management, conservation and research of the Dinaric lynx population”. Further, it was supported by the Slovenian Research Agency Project L1-6484 and co-funded by the Environmental Agency of the Republic of Slovenia, the Ministry of Agriculture of the Republic of Slovenia and the Institute of the Republic of Slovenia for Nature Conservation. Also we are grateful for financial support provided by Croatian State Institute for Nature Protection, Croatian Environmental protection and energy efficiency fund, and Carlsberg Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Gomerčić.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sindičić, M., Polanc, P., Gomerčić, T. et al. Genetic data confirm critical status of the reintroduced Dinaric population of Eurasian lynx. Conserv Genet 14, 1009–1018 (2013). https://doi.org/10.1007/s10592-013-0491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0491-x

Keywords

Navigation