Skip to main content

Advertisement

Log in

Unraveling natural versus anthropogenic effects on genetic diversity within the southeastern beach mouse (Peromyscus polionotus niveiventris)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Anthropogenic habitat loss is among the greatest threats to biodiversity. Populations undergoing fragmentation and loss of habitat are also threatened by erosion of genetic diversity. However, contemporary genetic diversity may be the legacy of natural processes acting prior to anthropogenic influences. Measurements of genetic diversity from contemporary and historical samples can evaluate the relative impact of natural and anthropogenic effects on its status. We investigated the genetic diversity of a threatened subspecies occupying Atlantic Coast barrier islands of Florida, Peromyscus polionotus niveiventris (southeastern beach mouse). To test for recent loss of genetic diversity, we compared cyt b data from museum samples (historical—prior to human impact) with contemporary samples throughout their range. Ten microsatellite loci were genotyped for samples from the contemporary range, to determine current population interconnectedness and structure. The results using cyt b data revealed no statistically significant loss of genetic diversity between historical and contemporary populations of P. p. niveiventris. Both nuclear and mitochondrial data support our conclusion that the observed capture and conservation of historical genetic diversity is explained by the large federally protected region of continuous habitat that remains with minimal human impact. Whereas, the two disjunct populations isolated by anthropogenic habitat destruction, exhibit significant losses of genetic diversity. Collectively, these findings offer a sound basis from which to formulate a conservation strategy to maintain the genetic diversity of P. p. niveiventris. Furthermore, our study underscores the importance of large expanses of continuous habitat within the geographic range of species to facilitate the maintenance of genetic integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc Lond B Biol Sci 353:177–186

    Article  PubMed  CAS  Google Scholar 

  • Austin JJ, Melville J (2006) Incorporating historical museum specimens into molecular systematic and conservation genetics research. Mol Ecol Notes 6:1089–1092

    Article  CAS  Google Scholar 

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Åbjörnsson K, Hansson L-A, Brönmark C (2004) Responses of prey from habitats with different predator regimes: local adaptation and heritability. Ecology 85:1859–1866

    Article  Google Scholar 

  • Barbier EB, Koch EW, Silliman BR, Hacker SD, Wolanski E, Primavera J, Granek EF, Polasky S, Aswani S, Cramer LA, Stoms DM, Kennedy CJ, Bael D, Kappel CV, Perillo GME, Reed DJ (2008) Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319:321–323

    Article  PubMed  CAS  Google Scholar 

  • Bidlack AL, Cook JA (2001) Reduced genetic variation in insular northern flying squirrels (Glaucomys sabrinus) along the North Pacific Coast. Anim Conserv 4:283–290

    Article  Google Scholar 

  • Breininger DR, Barkaszi MJ, Smith RB, Oddy DM, Provancha JA (1998) Prioritizing wildlife taxa for biological diversity conservation at the local scale. Environ Manag 22:315–321

    Article  Google Scholar 

  • Breininger DR, Burgman MA, Stith BM (1999) Influence of habitat quality, catastrophes, and population size on extinction risk of the Florida scrub-jay. Wildl Soc Bull 27:810–822

    Google Scholar 

  • Calvignac S, Hughes S, Tougard C, Michaux J, Thevenot M, Philippe M, Hamdine W, Hänni C (2008) Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times. Mol Ecol 17:1962–1970

    Article  PubMed  CAS  Google Scholar 

  • Chan YL, Lacey EA, Pearson OP, Hadly EA (2005) Ancient DNA reveals Holocene loss of genetic diversity in a South American rodent. Biol Lett 1:423–426

    Article  PubMed  CAS  Google Scholar 

  • Chirhart SE, Honeycutt RL, Greenbaum IF (2000) Microsatellite markers for the deer mouse Peromyscus maniculatus. Mol Ecol 9:1669–1671

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Lovette IJ (2010) Effects of habitat fragmentation on effective dispersal of Florida Scrub-Jays. Conserv Biol 24:1080–1088

    Article  PubMed  Google Scholar 

  • Culver M, Johnson WE, Pecon-Slattery J, O’Brien SJ (2000) Genomic ancestry of the American puma (Puma concolor). J Hered 91:186–197

    Article  PubMed  CAS  Google Scholar 

  • Culver M, Hedrick PW, Murphy K, Brien SO, Hornocker MG (2008) Estimation of the bottleneck size in Florida panthers. Anim Conserv 11:104–110

    Article  Google Scholar 

  • Degner JF, Stout IJ, Roth JD, Parkinson CL (2007) Population genetics and conservation of the threatened southeastern beach mouse (Peromyscus polionotus niveiventris): subspecies and evolutionary units. Conserv Genet 8:1441–1452

    Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12:346–353

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • François R (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Geselbracht L, Freeman K, Kelly E, Gordon DR, Putz FE (2011) Retrospective and prospective model simulations of sea level rise impacts on Gulf of Mexico coastal marshes and forests in Waccasassa Bay, Florida. Clim Chang 107:35–57

    Article  Google Scholar 

  • Gotelli NJ, Entsminger GL (2001) EcoSim: null models software for ecology v. 7.0. Acquired Intelligence Inc. & Kesey-Bear, Jericho

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html

  • Groom MJ, Meffe GK, Carroll CR (2005) Principles of conservation biology, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Haag T, Santos AS, Sana DA, Morato RG, Cullen L Jr, Crawshaw PG Jr, De Angelo C, Di Bitetti MS, Salzano FM, Eizirik E (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol Ecol 19:4906–4921

    Article  PubMed  CAS  Google Scholar 

  • Hall ER (1981) The mammals of North America, 2nd edn. Wiley, New York

    Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Bernal Ramírez JH, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci USA 99:11742–11747

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (1995) Elephant seals and the estimation of a population bottleneck. J Hered 86:232–235

    PubMed  CAS  Google Scholar 

  • Helm A, Oja T, Saar L, Takkis K, Talve T, Pärtel M (2009) Human influence lowers plant genetic diversity in communities with extinction debt. J Ecol 97:1329–1336

    Article  Google Scholar 

  • Herron MD, Castoe TA, Parkinson CL (2004) Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus). Mol Phylogenet Evol 31:1015–1030

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP (2006) A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313:101–104

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EA, Blouin MS (2004) Historical data refute recent range contraction as cause of low genetic diversity in isolated frog populations. Mol Ecol 13:271–276

    Article  PubMed  Google Scholar 

  • Hofreiter M, Jaenicke V, Serre D, Haeseler Av A, Pääbo S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–4799

    Article  PubMed  CAS  Google Scholar 

  • Holland GJ, Bennett AF (2010) Habitat fragmentation disrupts the demography of a widespread native mammal. Ecography 33:841–853

    Article  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Jensen J, Bohonak A, Kelley S (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  Google Scholar 

  • Johnson JA, Dunn PO, Bouzat JL (2007) Effects of recent population bottlenecks on reconstructing the demographic history of prairie-chickens. Mol Ecol 16:2203–2222

    Article  PubMed  CAS  Google Scholar 

  • Kalkvik HM, Stout IJ, Doonan TJ, Parkinson CL (2012) Investigating niche and lineage diversification in widely distributed taxa: phylogeography and ecological niche modeling of the Peromyscus maniculatus species group. Ecography 35:54–64

    Article  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1:143–158

    Article  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci 104:3883–3888

    Article  PubMed  CAS  Google Scholar 

  • Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413

    Article  PubMed  CAS  Google Scholar 

  • Leonard JA (2008) Ancient DNA applications for wildlife conservation. Mol Ecol 17:4186–4196

    Article  PubMed  CAS  Google Scholar 

  • MacAvoy E, McGibbon L, Sainsbury J, Lawrence H, Wilson C, Daugherty C, Chambers G (2007) Genetic variation in island populations of tuatara (Sphenodon spp) inferred from microsatellite markers. Conserv Genet 8:305–318

    Article  CAS  Google Scholar 

  • MacNeil FS (1950) Pleistocene shorelines in Florida and Georgia. US Geol Surv 221:59–107

    Google Scholar 

  • Maschinski J, Ross MS, Liu H, O’Brien J, von Wettberg EJ, Haskins KE (2011) Sinking ships: conservation options for endemic taxa threatened by sea level rise. Clim Chang 107:147–167

    Article  Google Scholar 

  • Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089

    Article  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Medina-Vogel G, Merino LO, Alarcón RM, Vianna JD (2008) Coastal–marine discontinuities, critical patch size and isolation: implications for marine otter conservation. Anim Conserv 11:57–64

    Article  Google Scholar 

  • Mhemmed G, Kamel H, Chedly A (2008) Does habitat fragmentation reduce genetic diversity and subpopulation connectivity? Ecography 31:751–756

    Article  Google Scholar 

  • Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc Natl Acad Sci USA 100:4334–4339

    Article  PubMed  CAS  Google Scholar 

  • Mullen LM, Hoekstra HE (2008) Natural selection along an environmental gradient: a classic cline in mouse pigmentation. Evolution 62:1555–1570

    Article  PubMed  CAS  Google Scholar 

  • Mullen LM, Vignieri SN, Gore JA, Hoekstra HE (2009) Adaptive basis of geographic variation: genetic, phenotypic and environmental differences among beach mouse populations. Proc R Soc B 276:3809–3818

    Article  PubMed  Google Scholar 

  • Nicholas KB, Nicholas HB Jr, Deerfield DWI (1997) GeneDoc: analysis and visualization of genetic variation. EMBnet.news 4:1–4

    Google Scholar 

  • O’Brien SJ (1994) A role for molecular genetics in biological conservation. Proc Natl Acad Sci 91:5748–5755

    Article  PubMed  Google Scholar 

  • Oli MK, Holler NR, Wooten MC (2001) Viability analysis of endangered Gulf Coast beach mice (Peromyscus polionotus) populations. Biol Conserv 97:107–118

    Article  Google Scholar 

  • Paxinos EE, James HF, Olson SL, Ballou JD, Leonard JA, Fleischer RC (2002) Prehistoric decline of genetic diversity in the nene. Science 296:1827

    Article  PubMed  CAS  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GenAlEx6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pichler FB, Baker CS (2000) Loss of genetic diversity in the endemic Hector’s dolphin due to fisheries-related mortality. Proc R Soc B 267:97–102

    Article  PubMed  CAS  Google Scholar 

  • Pries AJ, Branch LC, Miller DL (2009) Impact of hurricanes on habitat occupancy and spatial distribution of beach mice. J Mammal 90:841–850

    Article  Google Scholar 

  • Prince KL, Glenn TC, Dewey MJ (2002) Cross-species amplification among peromyscines of new microsatellite DNA loci from the oldfield mouse (Peromyscus polionotus subgriseus). Mol Ecol Notes 2:133–136

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reding D, Freed L, Cann R, Fleischer R (2010) Spatial and temporal patterns of genetic diversity in an endangered Hawaiian honeycreeper, the Hawaii Akepa (Loxops coccineus coccineus). Conserv Genet 11:225–240

    Article  CAS  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Saha AK, Saha S, Sadle J, Jiang J, Ross MS, Price RM, Sternberg LSLO, Wendelberger KS (2011a) Sea level rise and South Florida coastal forests. Clim Chang 107:81–108

    Article  Google Scholar 

  • Saha S, Bradley K, Ross MS, Hughes P, Wilmers T, Ruiz PL, Bergh C (2011b) Hurricane effects on subtropical pine rocklands of the Florida Keys. Clim Chang 107:169–184

    Article  Google Scholar 

  • Schmid JR (1995) Marine turtle populations on the east-central coast of Florida: results of tagging studies at Cape Canaveral, Florida, 1986–1991. Fish Bull (Washington, DC) 93:139–151

    Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Scileppi E, Donnelly JP (2007) Sedimentary evidence of hurricane strikes in western Long Island, New York. Geochem Geophys Geosyst 8:Q06011

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Small C, Nicholls RJ (2003) A global analysis of human settlement in coastal zones. J Coast Res 19:584–599

    Google Scholar 

  • Stout IJ (1992) Southeastern beach mouse. In: Humphrey SR (ed) Rare and endagered biota of Florida. University of Florida, Gainsville, pp 242–249

    Google Scholar 

  • Taylor SS, Jamieson IG (2008) No evidence for loss of genetic variation following sequential translocations in extant populations of a genetically depauperate species. Mol Ecol 17:545–556

    PubMed  Google Scholar 

  • Taylor SS, Jamieson IG, Wallis GP (2007) Historical and contemporary levels of genetic variation in two New Zealand passerines with different histories of decline. J Evol Biol 20:2035–2047

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    PubMed  CAS  Google Scholar 

  • Thalmann O, Wegmann D, Spitzner M, Arandjelovic M, Guschanski K, Leuenberger C, Bergl R, Vigilant L (2011) Historical sampling reveals dramatic demographic changes in western gorilla populations. BMC Evol Biol 11:85

    Article  PubMed  Google Scholar 

  • Tinghitella RM, Zuk M, Beveridge M, Simmons LW (2011) Island hopping introduces Polynesian field crickets to novel environments, genetic bottlenecks and rapid evolution. J Evol Biol 24:1199–1211

    Article  PubMed  CAS  Google Scholar 

  • Tracy L, Jamieson I (2011) Historical DNA reveals contemporary population structure results from anthropogenic effects, not pre-fragmentation patterns. Conserv Genet 12:517–526

    Article  Google Scholar 

  • Triggs SJ, Powlesland RG, Daugherty CH (1989) Genetic variation and conservation of Kakapo (Strigops habroptilus: Psittaciformes). Conserv Biol 3:92–96

    Article  Google Scholar 

  • Van Zant JL, Wooten MC (2007) Old mice, young islands and competing biogeographical hypotheses. Mol Ecol 16:5070–5083

    Article  PubMed  Google Scholar 

  • Vilà C, Sundqvist AK, Flagstad Ø, Seddon J, Rnerfeldt SB, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B Biol 270:91–97

    Article  Google Scholar 

  • Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends Ecol Evol 22:634–642

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson A, Marra P, Fleischer R (2012) Temporal patterns of genetic diversity in Kirtland’s warblers (Dendroica kirtlandii), the rarest songbird in North America. BMC Ecol 12:8

    Article  PubMed  Google Scholar 

  • Winsberg MD (1992) Population. In: Fernald EA, Purdum ED (eds) Atlas of Florida. The University of Florida Press, Gainsville, pp 126–167

    Google Scholar 

  • Wooten MC, Scribner KT, Krehling JT (1999) Isolation and characterization of microsatellite loci from the endangered beach mouse Peromyscus polionotus. Mol Ecol 8:167

    PubMed  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our study was funded by the U. S. Fish and Wildlife Service. We thank Alice Bard and Jeffrey Van Zant for aiding in acquiring samples from the current range of P. polionotus niveiventris, as well as Ryan Lamers for providing invaluable help in developing primers for the historical samples. We want to acknowledge the museums that provided us with specimens from their collections: American Museum of Natural History, Cornell University Museum of Vertebrates, Field Museum of Natural History, Florida Museum of Natural History, Harvard Museum of Comparative Zoology, University of New Mexico Museum of Southwestern Biology, University of California Berkley Museum of Vertebrate Zoology, and University of Michigan Museum of Zoology. We also thank Jacob Degner, Allyson Fenwick, Eric Hoffman, Jennafer Kalkvik, Mary Beth Manjerovic, Joshua Reece, and the PH lab group for comments that greatly improved this manuscript. Our study was conducted under permits issued by U.S. Fish and Wildlife Service, National Park Service, Florida Fish and Wildlife Conservation Commission, and the Florida Department of Environmental Protection. All live animals were handled according to protocols approved by IACUC# 06-46W from University of Central Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Parkinson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalkvik, H.M., Stout, I.J. & Parkinson, C.L. Unraveling natural versus anthropogenic effects on genetic diversity within the southeastern beach mouse (Peromyscus polionotus niveiventris). Conserv Genet 13, 1653–1664 (2012). https://doi.org/10.1007/s10592-012-0417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-012-0417-z

Keywords

Navigation