Skip to main content

Advertisement

Log in

Evidence of complex phylogeographic structure for the threatened rodent Leopoldamys neilli, in Southeast Asia

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Leopoldamys neilli is a threatened murine rodent species endemic to limestone karsts of Thailand. We have studied the phylogeography of L. neilli using two mitochondrial markers (cytb, COI) and one nuclear fragment (bfibr), in order to assess the influence of its endemicity to karst habitat. One hundred fifteen individuals of L. neilli were collected in 20 localities throughout the geographic range of this species in Thailand. Our study revealed strong geographic structure of the mtDNA genetic diversity: six highly differentiated, allopatric genetic lineages were observed in our dataset. They exhibit a very high degree of genetic divergence, low gene flow among lineages and low levels of haplotype and nucleotide diversities within lineages. Our results suggest that L. neilli’s populations are highly fragmented due to the scattered distribution of its karst habitat. The most divergent lineage includes the populations from western Thailand, which have been separated from the other genetic lineages since at least the Early Pleistocene. The other lineages are more closely related and have diverged since the Middle Pleistocene. This study revealed an unexpected high level of genetic differentiation within L. neilli and highlighted the high endemicity of this species to limestone karsts. Our results enhance the importance of protecting limestone habitats to preserve not only the species but also intraspecific diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the World’s humid tropical forests. Science 297:999–1002

    Article  PubMed  CAS  Google Scholar 

  • Aguilar JP, Michaux J (1996) The beginning of the age of Murinae (Mammalia: Rodentia) in southern France. Acta Zool Cracov 39:35–45

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Baker RH, DeSalle R (1997) Multiple sources of character information and the phylogeny of Hawaiian Drosophila. Syst Biol 46:654–673

    Article  PubMed  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 17:3754–3774

    PubMed  Google Scholar 

  • Bradley R, Baker R (2001) A test of the genetic species concepts: cytochrome-b sequences and mammals. J Mammal 82:960–973

    Article  Google Scholar 

  • Cabe PR, Page RB, Hanlon TJ, Aldrich ME, Connors L, Marsh DM (2007) Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in a continuous habitat. Heredity 98:53–60

    Article  PubMed  CAS  Google Scholar 

  • Campbell P, Schneider CJ, Adnan AM, Zubaid A, Kunz TH (2004) Phylogeny and phylogeography of Old World fruit bats in the Cynopterus brachyotis complex. Mol Phylogenet Evol 33:764–781

    Article  PubMed  CAS  Google Scholar 

  • Campbell P, Putnam A, Bonney C, Bilgin R, Morales JC, Kunz TH, Ruedas LA (2007) Contrasting patterns of genetic differentiation between endemic and widespread species of fruit bats (Chiroptera: Pteropodidae) in Sulawesi, Indonesia. Mol Phylogenet Evol 44:474–482

    Article  PubMed  CAS  Google Scholar 

  • Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 7:111–122

    PubMed  CAS  Google Scholar 

  • Clements R, Sodhi NS, Schilthuizen M, Ng PKL (2006) Limestone karsts of Southeast Asia: imperiled arks of biodiversity. Bioscience 56:733–742

    Article  Google Scholar 

  • Clements R, Ng PKL, Lu XX, Ambu S, Schilthuizen M, Bradshaw CJA (2008) Using biogeographical patterns of endemic land snails to improve conservation planning of limestone karsts. Biol Conserv 141:2751–2764

    Article  Google Scholar 

  • Corbet G, Hill J (1992) The mammals of the Indomalayan region: a systematic review. Oxford University Press, Oxford

    Google Scholar 

  • Day MJ, Urich PB (2000) An assessment of protected karst landscapes in Southeast Asia. Cave Karst Sci 27:61–70

    Google Scholar 

  • Dheeradilok P (1995) Quaternary coastal morphology and deposition in Thailand. Quat Int 26:49–54

    Article  Google Scholar 

  • Dheeradilok P, Kaewyana W (1983) On the quaternary deposits of Thailand. In: Conference on Geology and mineral resources of Thailand, Bangkok, pp 127–135

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. Public Libr Sci Biol 4:699–710

    CAS  Google Scholar 

  • Eldridge MDB, King JM, Loupis AK, Spencer PBS, Taylor AC, Pope LC, Hall GP (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv Biol 13:531–541

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evol Biol Online 1:47–50

    CAS  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Garcia-Paris M, Good DA, Parra-Olea G, Wake DB (2000) Biodiversity of Costa Rican salamanders: implications of high levels of genetic differentiation and phylogeographic structure for species formation. Proc Natl Acad Sci USA 97:1640–1647

    Article  PubMed  CAS  Google Scholar 

  • Gillieson D (2005) Karst in Southeast Asia. In: Gupta A (ed) The physical geography of Southeast Asia. Oxford University Press, Oxford, pp 157–176

    Google Scholar 

  • Gorog AJ, Sinaga MH, Engstrom MD (2004) Vicariance or dispersal? Historical biogeography of three Sunda shelf murine rodents (Maxomys surifer, Leopoldamys sabanus and Maxomys whiteheadi). Biol J Linn Soc 81:91–109

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, Pittman KW, Arunarwati B, Stolle F, Steininger MK, Carroll M, DiMiceli C (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc Natl Acad Sci USA 105:9439–9444

    Article  PubMed  CAS  Google Scholar 

  • Hare MP, Palumbi SR (1999) The accuracy of heterozygous base calling from diploid sequence and resolution of haplotypes using allele-specific sequencing. Mol Ecol 8:1749–1752

    Article  Google Scholar 

  • Heads M (2005) Dating nodes on molecular phylogenies: a critique of molecular biogeography. Cladistics 21:62–78

    Article  Google Scholar 

  • Ho SYW, Larson G (2006) Molecular clocks: when times are a-changin’. Trends Genet 22:79–83

    Article  PubMed  CAS  Google Scholar 

  • Jacobs LL, Downs WR (1994) The evolution of murine rodents in Asia. In: Tomida Y, Li CK, Setoguschi T (eds) Rodent and lagomorph families of Asian origins and their diversification, vol 8. National Science Museum Monograph, Tokyo, pp 149–156

  • Jacobs LL, Flynn LJ (2005) Of mice… again: the Siwalik rodent record, murine distribution, and molecular clocks. In: Lieberman D, Smith R, Kelley J (eds) Interpreting the past: essays on human primate and mammal evolution. Brill Academic, Leiden, pp 63–80

    Google Scholar 

  • Jacobs LL, Pilbeam D (1980) Of mice and men: fossil-based divergence dates and molecular “Clocks”. J Hum Evol 9:551–555

    Article  Google Scholar 

  • Jaeger JJ, Tong H, Denys C (1986) Age de la divergence Mus-Rattus: comparaison des données paléontologiques et moléculaires. C R Acad Sci II 302:917–922

    Google Scholar 

  • Koh LP, Sodhi NS (2010) Conserving Southeast Asia’s imperiled biodiversity: scientific, management, and policy challenges. Biodivers Conserv 19:913–917

    Article  Google Scholar 

  • Lekagul B, McNeely JA (1988) Mammals of Thailand. White Lotus Press, Bangkok

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software or comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liu CC, Liu YG, Guo K, Zheng YR, Li GQ, Yu LF, Yang R (2010) Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiol Plantarum 139:39–54

    Article  CAS  Google Scholar 

  • Lunde D, Aplin K (2008) Leopoldamys neilli. In: IUCN 2010 (ed) IUCN Red List of threatened species, version 2010.1

  • Martinez-Solano I, Jockusch EL, Wake DB (2007) Extreme population subdivision throughout a continuous range: phylogeography of Batrachoseps attenuates (Caudata: Plethodontidae) in western North America. Mol Ecol 16:4335–4355

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 14:114–116

    Google Scholar 

  • Meijaard E, Groves CP (2006) The geography of mammals and rivers in mainland South-East Asia, chap 11. In: Lehman SM, Fleagle JG (eds) Primate biogeography. Springer, New York, pp 305–329

    Chapter  Google Scholar 

  • Michaux J, Aguilar JP, Montuire S, Wolff A, Legendre S (1997) Les Murinae (Rodentia, Mammalia) neogenes du Sud de la France: evolution et paleoenvironnements. Geobios 30:379–385

    Article  Google Scholar 

  • Michaux JR, Magnanou E, Paradis E, Nieberding C, Libois R (2003) Mitochondrial phylogeography of the woodmouse (Apodemus sylvaticus) in the western Palaearctic region. Mol Ecol 12:685–697

    Article  PubMed  CAS  Google Scholar 

  • Michaux JR, Libois R, Filippucci MG (2005) So close and so different: comparative phylogeography of two small mammal species, the Yellow-necked fieldmouse (Apodemus flavicollis) and the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity 94:52–63

    Article  PubMed  CAS  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375

    Article  PubMed  CAS  Google Scholar 

  • Mouline K, Granjon L, Galan M, Tatard C, Doukary A, Solimane AA, Duplantier JM, Cosson JF (2008) Phylogeography of a Sahelian rodents species Mastomys huberti: a Plio-Pleistocene story of emergence and colonization of humid habitats. Mol Ecol 17:1036–1053

    Article  PubMed  CAS  Google Scholar 

  • Musser G, Carleton M (2005) Superfamily Muroidea. In: Wilson DE (ed) Mammal species of the World: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, pp 894–1531

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nieberding C, Morand S, Libois R, Michaux JR (2006) Parasites and the island syndrome: the colonizationof the western Mediterranean islands by Heligmosomoides polygyrus (Dujardin, 1845). J Biogeogr 33:1212–1222

    Article  Google Scholar 

  • Nijman V (2010) An overview of international wildlife trade from Southeast Asia. Biodiver Conserv 19:1101–1114

    Article  Google Scholar 

  • O’Loughlin SM, Somboon P, Walton C (2007) High levels of population structure caused by habitat islands in the malarial vector Anopheles scanloni. Heredity 99:31–40

    Article  PubMed  Google Scholar 

  • Pagès M, Chaval Y, Waengsothorn S, Cosson JF, Hugot JP, Morand S, Michaux J (2010) Refining the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol Biol. doi:10.1186/1471-2148-10-184

  • Patou ML, Chen J, Cosson L, Andersen DH, Cruaud C, Couloux A, Randi E, Zhang S, Veron G (2009) Low genetic diversity in the masked palm civet Paguma larvata (Viverridae). J Zool 278:218–230

    Article  Google Scholar 

  • Patou ML, Wilting A, Gaubert P, Esselstyn JA, Cruaud C, Jennings A, Fickel J, G Veron (2010) Evolutionary history of the Paradoxurus palm civets—a new model for Asian biogeography. J Biogeogr. doi:10.1111/j.1365-2699.2010.02364.x

  • Peh KSH (2010) Invasive species in Southeast Asia: the knowledge so far. Biodiver Conserv 19:1083–1099

    Article  Google Scholar 

  • Penny D (2001) A 40,000 year palynological record from north-east Thailand; implications for biogeography and palaeo-environmental reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 171:97–128

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality test against population growth. Mol Biol Evol 19:2092–2100

    PubMed  CAS  Google Scholar 

  • Rivière-Dobigny T, Herbreteau V, Khamsavath K, Douangboupha B, Morand S, Michaux JR, Hugot JP (2011) Preliminary assessment of the genetic population structure of the enigmatic species Laonastes aenigmamus (Rodentia: Diatomyidae). J Mammal 92:620–628

    Google Scholar 

  • Robins J, Hingston M, Matisoo-Smith E, Ross H (2007) Identifying Rattus species using mitochondrial DNA. Mol Ecol Notes 7:717–729

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg NA, Feldman MW (2002) The relationship between coalescence times and population divergence times. In: Slatkin M, Veuille M (eds) Modern developments in theoretical population genetics. Oxford University Press, New York, pp 130–164

    Google Scholar 

  • Schilthuizen M, Liew TS, Bin Elahan B, Lackman-Ancrenaz I (2005) Effects of karst forest degradation on pulmonate and prosobranch land snail communities in Sabah, Malaysian Borneo. Conserv Biol 19:949–954

    Google Scholar 

  • Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J et al (2008) The status of the world’s land and marine mammals: diversity, threats and knowledge. Science 322:225–230

    Article  PubMed  CAS  Google Scholar 

  • Seddon JM, Santucci F, Reeve NJ, Hewitt GM (2001) DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor: Pleistocene refugia, postglacial expansion and colonization routes. Mol Ecol 10:2187–2198

    Article  PubMed  CAS  Google Scholar 

  • Simms MJ (2005) Sedimentary processes, karsts and palaeokarst. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of geology. Elsevier, Oxford, pp 678–687

    Chapter  Google Scholar 

  • Sinsakul S (2000) Late Quaternary geology of the Lower Central Plain, Thailand. J Asian Earth Sci 18:415–426

    Article  Google Scholar 

  • Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian biodiversity: an impending disaster. Trends Ecol Evol 19:654–660

    Article  PubMed  Google Scholar 

  • Sodhi NS, Posa MRC, Lee TM, Bickford D, Koh LP, Brook BW (2010) The state and conservation of Southeast Asian biodiversity. Biodiver Conserv 19:317–328

    Article  Google Scholar 

  • Sorenson MD, Franzosa EA (2007) TreeRot, version 3. Boston University, Boston

    Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony, (*and other methods), version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taylor D (2010) Biomass burning, humans and climate change in Southeast Asia. Biodiver Conserv 19:1025–1042

    Article  Google Scholar 

  • Vermeulen J, Whitten T (1999) Biodiversity and cultural property in the management of limestone resources—lessons from East Asia. World Bank, Washington

    Google Scholar 

  • Verneau O, Catzeflis F, Furano AV (1998) Determining and dating recent rodent speciation events by using L1 (LINE-1) retrotransposons. Proc Natl Acad Sci USA 95:11284–11289

    Article  PubMed  CAS  Google Scholar 

  • Waengsothorn S, Nabhitabhata J, Moochan T (2007) The ecological distribution of Thai endemic rodents with a new distributional range of Niviventer hinpoon. Thailand Nat Hist Mus J 2:31–42

    Google Scholar 

  • Waengsothorn S, Kenthao A, Latinne A, Hugot JP (2009) Rodents within the Centre for Thai National Reference Collections (CTNRC), past, present and future. Kasetsart J (Nat Sci) 43:118–124

    Google Scholar 

  • Welch JJ, Bromham L (2005) Molecular dating when rates vary. Trends Ecol Evol 20:320–327

    Article  PubMed  Google Scholar 

  • White JC, Penny D, Kealhofer L, Maloney B (2004) Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand. Quat Int 113:111–132

    Article  Google Scholar 

  • Wiles GJ (1981) Abundance and habitat preferences of small mammals in southwestern Thailand. Nat Hist Bull Siam Soc 29:44–54

    Google Scholar 

  • World Bank (2004) Thailand Environment Monitor 2004, Biodiversity conservation. World Bank Report. http://go.worldbank.org/VPRE208MZ0

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Boonchai Tontan who worked hard in the field and help us to collect the samples used in this study. We are grateful to G. Vanhamel for his help in the lab. We express gratitude to S. Jittapalapong for his administrative help. We thank Drs D. Aigoin, C. Berthouly, C. Ek, S. Morand, M. Pagès for their great help and/or comments on the manuscript. We thank E. Latinne for her help in the drafting of the figures. We wish to acknowledge Dr Andy Jennings for English corrections and scientific comments. This work was supported by a Belgian FRS-FNRS (Fonds de la Recherche Scientifique) fellowship to A. Latinne (mandate “aspirant”) and to J.R. Michaux (mandate “chercheur qualifié”), and a financial grant from the Belgian FNRS (crédits pour brefs séjours à l’étranger to A. Latinne), from the University of Liège (Patrimoine) and from the Communauté française de Belgique. This study is part of the “CERoPath project” (Community Ecology of Rodents and their Pathogens in South-East Asia: effects of biodiversity changes and implications in health ecology), ANR Biodiversity ANR 07 BDIV 012, funded by the French National Agency for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Latinne.

Appendices

Appendix 1

See Table 5.

Table 5 Sampling locality, samples used for sequencing (N) for each dataset and haplotype/allele distribution

Appendix 2

See Tables 6 and 7.

Table 6 Genbank accession numbers for cytb and COI haplotypes and for bfibr alleles of L. neilli
Table 7 Vouchers specimens from the CERoPath tissue collection (Pagès et al. 2010) used in this study and their Genbank accession numbers

Appendix 3

See Tables 8 and 9.

Table 8 Mitochondrial haplotype definitions
Table 9 Three combined genes haplotypes definitions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latinne, A., Waengsothorn, S., Herbreteau, V. et al. Evidence of complex phylogeographic structure for the threatened rodent Leopoldamys neilli, in Southeast Asia. Conserv Genet 12, 1495–1511 (2011). https://doi.org/10.1007/s10592-011-0248-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0248-3

Keywords

Navigation