Skip to main content
Log in

Factors associated with the geographic distribution of leucocytozoa parasitizing nestling eagle owls (Bubo bubo): a local spatial-scale analysis

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Knowledge of the factors influencing the patterns and distribution of parasite infections and disease outbreaks is a major question in disease ecology and conservation research. In this study, we use a highly efficient PCR approach to detect blood parasites and investigate the factors influencing geographical variation in the distribution of leucocytozoids parasitizing nestling eagle owls (Bubo bubo) over a 3-year study period. We found that both prevalence and intensity of infections by the single lineage of Leucocytozoon ziemanni infecting nestling eagle owls in the study area increased with local owl population density and decreased with nest height above sea level. Overall, these results suggest that higher horizontal transmission rates under higher host density conditions together with the presence of adequate habitats for larval development of vectors are relevant factors influencing blood parasite distribution in the study system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afrane YA, Zhou GF, Lawson BW, Githeko AK, Yan GY (2006) Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in Western Kenya highlands. Am J Trop Med Hyg 74:772–778

    PubMed  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases. 1. Nature 280:361–367

    Article  CAS  PubMed  Google Scholar 

  • Arneberg P, Skorping A, Grenfell B, Read AF (1998) Host densities as determinants of abundance in parasite communities. Proc R Soc Lond B 265:1283–1289

    Article  Google Scholar 

  • Ashford RW, Wyllie I, Newton I (1990) Leucocytozoon toddi in British sparrowhawks Accipiter nisus—observations on the dynamics of infection. J Nat Hist 24:1101–1107

    Article  Google Scholar 

  • Atkinson CT, Dusek RJ, Lease JK (2001a) Serological responses and immunity to superinfection with avian malaria in experimentally-infected Hawaii Amakihi. J Wildlife Dis 37:20–27

    CAS  Google Scholar 

  • Atkinson CT, Lease JK, Drake BM, Shema NP (2001b) Pathogenicity, serological responses, and diagnosis of experimental and natural malarial infections in native Hawaiian thrushes. Condor 103:209–218

    Article  Google Scholar 

  • Balls MJ, Bodker R, Thomas CJ, Kisinza W, Msangeni HA, Lindsay SW (2004) Effect of topography on the risk of malaria infection in the Usambara Mountains, Tanzania. Trans R Soc Trop Med Hyg 98:400–408

    Article  CAS  PubMed  Google Scholar 

  • Bensch S, Stjernman M, Hasselquist D, Ostman O, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589

    Article  CAS  Google Scholar 

  • Bensch S, Waldenström J, Jonzen N, Westerdahl H, Hansson B, Sejberg D, Hasselquist D (2007) Temporal dynamics and diversity of avian malaria parasites in a single host species. J Anim Ecol 76:112–122

    Article  PubMed  Google Scholar 

  • Bermejo M, Rodriguez-Teijeiro JD, Illera G, Barroso A, Vila C, Walsh PD (2006) Ebola outbreak killed 5000 gorillas. Science 314:1564

    Article  CAS  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Ellegren H (1996) First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc R Soc Lond B 263:1635–1641

    Article  CAS  Google Scholar 

  • Finn DS, Theobald DM, Black WC, Poff NL (2006) Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol Ecol 15:3553–3566

    Article  CAS  PubMed  Google Scholar 

  • Githeko AK, Ayisi JM, Odada PK, Atieli FK, Ndenga BA, Githure JI, Yan GY (2006) Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malar J 5:107

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802

    Article  CAS  PubMed  Google Scholar 

  • Hellgren O, Waldenström J, Pérez-Tris J, Szollosi E, Hasselquist D, Krizanauskiene A, Ottosson U, Bensch S (2007) Detecting shifts of transmission areas in avian blood parasites—a phylogenetic approach. Mol Ecol 16:1281–1290

    Article  PubMed  Google Scholar 

  • Hellgren O, Bensch S, Malmqvist B (2008) Bird hosts, blood parasites and their vectors—associations uncovered by molecular analyses of blackfly blood meals. Mol Ecol 17:1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Ishak HD, Dumbacher JP, Anderson NL, Keane JJ, Valkiūnas G, Haig SM, Tell LA, Sehgal RNM (2008) Blood parasites in owls with conservation implications for the spotted owl (Strix occidentalis). PLoS ONE 3:e2304

    Article  PubMed  Google Scholar 

  • Jarvi SI, Farias MEM, Baker H, Freifeld HB, Baker PE, Van Gelder E, Massey JG, Atkinson CT (2003) Detection of avian malaria (Plasmodium spp.) in native land birds of American Samoa. Conserv Genet 4:629–637

    Article  CAS  Google Scholar 

  • Koenraadt CJM, Paaijmans KP, Schneider P, Githeko AK, Takken W (2006) Low larval vector survival explains unstable malaria in the western Kenya highlands. Trop Med Int Health 11:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Korpimäki E, Hakkarainen H, Bennett GF (1993) Blood parasites and reproductive success of tengmalm owls—detrimental effects on females but not on males. Funct Ecol 7:420–426

    Article  Google Scholar 

  • Krackow S, Tkadlec E (2001) Analysis of brood sex ratios: implications of offspring clustering. Behav Ecol Sociobiol 50:293–301

    Article  Google Scholar 

  • Krone O, Waldenström J, Valkiūnas G, Lessow O, Muller K, Iezhova TA, Fickel J, Bensch S (2008) Haemosporidian blood parasites in European birds of prey and owls. J Parasitol 94:709–715

    CAS  PubMed  Google Scholar 

  • Little RM, Earlé RA (1995) Sandgrouse (Pterocleidae) and sociable weavers Philetarius socius lack avian haematozoa in semi-arid regions of South Africa. J Arid Environ 30:367–370

    Article  Google Scholar 

  • Malmqvist B, Zhang YX, Adler PH (1999) Diversity, distribution and larval habitats of North Swedish blackflies (Diptera : Simuliidae). Freshwater Biol 42:301–314

    Article  Google Scholar 

  • Marchesi L, Sergio F, Pedrini P (2002) Costs and benefits of breeding in human-altered landscapes for the eagle owl Bubo bubo. Ibis 144:E164–E177

    Article  Google Scholar 

  • Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol Phylogen Evol 47:261–273

    Article  CAS  Google Scholar 

  • Marzal A, Bensch S, Reviriego M, Balbontin J, de Lope F (2008) Effects of malaria double infection in birds: one plus one is not two. J Evol Biol 21:979–987

    Article  CAS  PubMed  Google Scholar 

  • May RM, Anderson RM (1979) Population biology of infectious diseases. 2. Nature 280:455–461

    Article  CAS  PubMed  Google Scholar 

  • Møller AP (1997) Parasitism and the evolution of host life history. In: Clayton DH, Moore J (eds) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford, pp 105–127

    Google Scholar 

  • Ojanen U, Ratti O, Adler PH, Kuusela K, Malmqvist B, Helle P (2002) Blood feeding by black flies (Diptera : Simuliidae) on black grouse (Tetrao tetrix) in Finland. Entomol Fennica 13:153–158

    Google Scholar 

  • Omumbo JA, Hay SI, Snow RW, Tatem AJ, Rogers DJ (2005) Modelling malaria risk in East Africa at high-spatial resolution. Trop Med Int Health 10:557–566

    Article  CAS  PubMed  Google Scholar 

  • Ortego J (2007) Consequences of eagle owl nest-site habitat preference for breeding performance and territory stability. Ornis Fennica 84:78–90

    Google Scholar 

  • Ortego J, Cordero PJ (2009) PCR-based detection and genotyping of haematozoa (Protozoa) parasitizing eagle owls, Bubo bubo. Parasitol Res 104:467–470

    Article  PubMed  Google Scholar 

  • Ortego J, Diaz M (2004) Habitat preference models for nesting eagle owls Bubo bubo: How much can be inferred from changes with spatial scale? Ardeola 51:385–394

    Google Scholar 

  • Ortego J, Espada F (2007) Ecological factors influencing disease risk in eagle owls Bubo bubo. Ibis 149:386–395

    Article  Google Scholar 

  • Ortego J, Espada F, Baquero RA (2007a) Ecology of parasitism of nestling Eurasian eagle-owls (Bubo Bubo) by Leucocytozoon ziemanni. J Raptor Res 41:247–251

    Article  Google Scholar 

  • Ortego J, Cordero PJ, Aparicio JM, Calabuig G (2007b) No relationship between individual genetic diversity and prevalence of avian malaria in a migratory kestrel. Mol Ecol 16:4858–4866

    Article  CAS  PubMed  Google Scholar 

  • Ortego J, Cordero PJ, Aparicio JM, Calabuig G (2008) Consequences of chronic infections with three different avian malaria lineages on reproductive performance of lesser kestrels (Falco naumanni). J Ornithol 149:337–343

    Article  Google Scholar 

  • Pagenkopp KM, Klicka J, Durrant KL, Garvin JC, Fleischer RC (2008) Geographic variation in malarial parasite lineages in the common yellowthroat (Geothlypis trichas). Conserv Gen 9:1577–1588

    Article  Google Scholar 

  • Paul REL, Hackford I, Brockman A, Muller-Graf C, Price R, Luxemburger C, White NJ, Nosten F, Day KP (1998) Transmission intensity and Plasmodium falciparum diversity on the northwestern border of Thailand. Am J Trop Med Hyg 58:195–203

    CAS  PubMed  Google Scholar 

  • Penteriani V, Delgado MD, Gallardo M, Ferrer M (2004) Spatial heterogeneity and structure of bird populations: a case example with the eagle owl. Popul Ecol 46:185–192

    Article  Google Scholar 

  • Penteriani V, Delgado MM, Maggio C, Aradis A, Sergio F (2005) Development of chicks and predispersal behaviour of young in the eagle owl Bubo bubo. Ibis 147:155–168

    Article  Google Scholar 

  • Pérez-Tris J, Hellgren O, Krizanauskiene A, Waldenström J, Secondi J, Bonneaud C, Fjeldsa J, Hasselquist D, Bensch S (2007) Within-host speciation of malaria parasites. PLoS ONE 2:e-235

    Article  Google Scholar 

  • Perkins SL, Schall JJ (2002) A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol 88:972–978

    CAS  PubMed  Google Scholar 

  • Ricklefs RE, Swanson BL, Fallon SM, Martinez-Abrain A, Scheuerlein A, Gray J, Latta SC (2005) Community relationships of avian malaria parasites in southern missouri. Ecol Monogr 75:543–559

    Article  Google Scholar 

  • Rohner C, Krebs CJ, Hunter DB, Currie DC (2000) Roost site selection of great horned owls in relation to black fly activity: an anti-parasite behavior? Condor 102:950–955

    Article  Google Scholar 

  • SAS Institute (2004) SAS/STAT 9.1 user’s guide. SAS Institute Inc, Cary

    Google Scholar 

  • Schall JJ, Vardo AM (2007) Identification of microsatellite markers in Plasmodium mexicanum, a lizard malaria parasite that infects nucleated erythrocytes. Mol Ecol Notes 7:227–229

    Article  CAS  Google Scholar 

  • Sehgal RNM, Hull AC, Anderson NL, Valkiūnas G, Markovets MJ, Kawamura S, Tell LA (2006) Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol 92:375–379

    Article  PubMed  Google Scholar 

  • Snow D, Perrins C (1998) The complete birds of the Western Palearctic on CD-ROM. Oxford University Press, Oxford

    Google Scholar 

  • Su T, Mulla MS (2001) Effects of temperature on development, mortality, mating and blood feeding behavior of Culiseta incidens (Diptera: Culicidae). J Vector Ecol 26:83–92

    CAS  PubMed  Google Scholar 

  • Tella JL, Blanco G, Forero MG, Gajón A, Donázar JA, Hiraldo F (1999) Habitat, world geographic range, and embryonic development of host explain the prevalence of avian hematozoa at small spatial and phylogenetics scales. Proc Natl Acad Sci USA 96:1785–1789

    Article  CAS  PubMed  Google Scholar 

  • Thompson BH (1976) Studies on flight range and dispersal of Simulium damnosum (Diptera-Simuliidae) in rain-forest of Cameroon. Ann Trop Med Parasitol 70:343–354

    CAS  PubMed  Google Scholar 

  • Valkiūnas G (2004) Avian malarial parasites and other haemosporidia. Taylor and Francis Publishing, London

    Book  Google Scholar 

  • Valkiūnas G, Bensch S, Iezhova TA, Krizanauskiene A, Hellgren O, Bolshakov CV (2006) Nested cytochrome B polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol 92:418–422

    Article  PubMed  Google Scholar 

  • Van Riper III C, Vanriper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344

    Article  Google Scholar 

  • Vardo AM, Schall JJ (2007) Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space. Mol Ecol 16:2712–2720

    Article  CAS  PubMed  Google Scholar 

  • Waldenström J, Bensch S, Hasselquist D, Ostman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194

    Article  PubMed  Google Scholar 

  • Wood MJ, Cosgrove CL, Wilkin TA, Knowles SCL, Day KP, Sheldon BC (2007) Within-population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus. Mol Ecol 16:3263–3273

    Article  CAS  PubMed  Google Scholar 

  • Woodworth BL, Atkinson CT, LaPointe DA, Hart PJ, Spiegel CS, Tweed EJ, Henneman C, LeBrun J, Denette T, DeMots R, Kozar KL, Triglia D, Lease D, Gregor A, Smith T, Duffy D (2005) Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc Natl Acad Sci USA 102:1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Zahar AR (1951) The ecology and distribution of black-flies (Simuliidae) in south-east Scotland. J Anim Ecol 20:33–62

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank F. Espada for determining blood parasite prevalence and intensities of infections in the blood smears. Four anonymous referees and the associate editor of Conservation Genetics provided valuable comments that improved the manuscript. This work received financial support from the projects: CGL2005-05611-C02-02/BOS (Ministerio de Educación y Ciencia), PAI05-053 (Junta de Comunidades de Castilla-La Mancha), and PCI08-0130-3954 (Junta de Comunidades de Castilla-La Mancha). We manipulated, bled, and banded nestling eagle owls under license from the Spanish institutional authorities (Environmental Agency of Junta de Comunidades de Castilla-La Mancha and the Ringing Office of the Ministry of Environment) and we followed general ethical guidelines for animal welfare and nature conservation. During this work J.O. was supported by a post-doctoral JAE-Doc (CSIC) contract. We performed all the laboratory work at the Laboratory of Genetics of the IREC and fragment genotyping was performed by the Centro de Investigaciones Biológicas (CSIC) of Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Ortego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortego, J., Cordero, P.J. Factors associated with the geographic distribution of leucocytozoa parasitizing nestling eagle owls (Bubo bubo): a local spatial-scale analysis. Conserv Genet 11, 1479–1487 (2010). https://doi.org/10.1007/s10592-009-9978-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9978-x

Keywords

Navigation