Skip to main content
Log in

Geographic and genetic isolation in spring-associated Eurycea salamanders endemic to the Edwards Plateau region of Texas

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Populations of neotenic, spring-associated salamanders of the genus Eurycea occupy discontinuous sites throughout the Edwards Plateau of central Texas and many warrant conservation attention. Here we used DNA sequence data from a nuclear (rag1) and a mitochondrial (ND4) gene to determine (1) the extent of genetic isolation among seven Edwards Plateau Eurycea populations and (2) the relationship between genetic distance and both geographic distance and hydrogeological features. Coalescent-based methods detected little gene flow among the sampled Eurycea populations, and we were unable to reject a model of complete isolation for any pair of populations. These findings were consistent with the relatively high genetic distances we detected among the sampled Eurycea populations (pairwise ϕST ranged from 0.249 to 0.924). We detected a positive correlation between genetic distance and geographic distance, which is consistent with a pattern of isolation by distance. However, while controlling for geographic distance, we did not detect a positive relationship between genetic distance and aquifer or river distance. Thus, we found no evidence that aquifers and/or rivers serve as dispersal corridors among isolated Eurycea populations. Based on these results, we have no evidence that re-colonization of spring sites by migrant salamanders following local extirpation would be likely. Our findings indicate that spring-associated Eurycea salamander populations occupying the Edwards Plateau region are genetically isolated, and that each of these populations should be considered a distinct management unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott PL, Woodruff CM (1986) The Balcones escarpment: geology, hydrology, ecology and social development in central Texas. Geological Survey of America, San Diego

    Google Scholar 

  • Arevalo E, Davis SK, Sites JW (1994) Mitochondrial-DNA sequence divergence and phylogenetic-relationships among 8 chromosome races of the Sceloporus-Grammicus complex (Phrynosomatidae) in central Mexico. Syst Biol 43:387–418. doi:10.2307/2413675

    Google Scholar 

  • Baker VR (1975) Flood hazards along the Balcones escarpment in central Texas: alternative approaches to their recognition, mapping and management. Univ Tex Austin Bureau Econ Geol Geol Circular 75:5–27

    Google Scholar 

  • Barker RA, Bush PW, Baker ET (1994) Geological history and hydrogeologic setting of the Edwards–Trinity aquifer system west-central Texas. US Geological Survey, Austin

    Google Scholar 

  • Brune G (1981) Springs of Texas. Texas A&M University Press, College Station

    Google Scholar 

  • Chen CC, Gillig D, McCarl BA (2001) Effects of climatic change on a water dependent regional economy: a study of the Texas Edwards Aquifer. Clim Change 49:397–409. doi:10.1023/A:1010617531401

    Article  CAS  Google Scholar 

  • Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998) Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Heredity 80:187–197. doi:10.1046/j.1365-2540.1998.00292.x

    Article  Google Scholar 

  • Chippindale PT (1998) Systematic status of the San Marcos salamander, Eurycea nana (Caudata: Plethodontidae). Copeia 1998:1046–1049. doi:10.2307/1447356

    Article  Google Scholar 

  • Chippindale PT, Price AH, Weins JJ, Hillis DM (2000) Phylogenetic relationships and systematic revision of central Texas Hemidactyliine Plethodontid salamanders. Herpetol Monogr 14:1–80. doi:10.2307/1467045

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  • Cook BD, Pringle CM, Hughes JM (2008) Phylogeography of an Island endemic, the Puerto Rican freshwater crab (Epilobocera sinuatifrons). J Hered 99:157–164. doi:10.1093/jhered/esm126

    Article  CAS  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Furmankiewicz J, Altringham J (2007) Genetic structure in a swarming brown long-eared bat (Plecotus auritus) population: evidence for mating at swarming sites. Conserv Genet 8:913–923. doi:10.1007/s10592-006-9246-2

    Article  CAS  Google Scholar 

  • Hanski I, Gilpin ME (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, NY

    Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760. doi:10.1534/genetics.103.024182

    Article  CAS  PubMed  Google Scholar 

  • Hey J, Nielsen R (2006) IM documentation. http://lifesci.rutgers.edu/~heylab/HeylabSoftware.htm#IM. Cited 3 May 2008

  • Hillis D, Chamberlain DA, Wilcox TP, Chippindale PT (2001) A new species of subterranean blind salamander (Plethodontidae: Hermidactyliini: Eurycea: Typhlomolge) from Austin, Texas, and a systematic revision of central Texas paedomorphic salamanders. Herptelogica 57:266–280

    Google Scholar 

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    CAS  PubMed  Google Scholar 

  • Loáiciga HA, Maidment DR, Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol (Amst) 227:173–194. doi:10.1016/S0022-1694(99)00179-1

    Article  Google Scholar 

  • Longley G (1981) The Edwards Aquifer: earth’s most diverse groundwater ecosystem? Int J Speleology 11:123–128

    Google Scholar 

  • Moritz C (1999) Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130:217–228. doi:10.1111/j.1601-5223.1999.00217.x

    Article  Google Scholar 

  • Nelson JM (1993) Population size, distribution, and life history of Eurycea nana in the San Marcos River. MS thesis, Southwest Texas State University

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

    CAS  PubMed  Google Scholar 

  • R Development Core Team (2007). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Roberge C, Normandeau E, Einum S, Guderley H, Bernatchez L (2008) Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Mol Ecol 17:314–324. doi:10.1111/j.1365-294X.2007.03438.x

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Kueffer JM, Roessli D, Excoffier L (2000) ARLEQUIN ver 2.0. A software program for population genetic data analysis. Genetics and Biometry Laboratory, Department of Anthropology and Ecology, University of Geneva, Geneva

    Google Scholar 

  • Segelbacher G, Hoglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780. doi:10.1046/j.1365-294X.2003.01873.x

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural-populations. Science 236:787–792. doi:10.1126/science.3576198

    Article  CAS  PubMed  Google Scholar 

  • Telfair RC (1999) Texas: wildlife resources and land uses. University of Texas Press, Austin

    Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic-analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA-sequence data. 3. cladaogram estimation. Genetics 132:619–633

    CAS  PubMed  Google Scholar 

  • Townsend AK, Rimmer CC, Latta SC, Lovette IJ (2007) Ancient differentiation in the single-island avian radiation of endemic Hispartiolan chat-tanagers (Aves : Calyptophilus). Mol Ecol 16:3634–3642. doi:10.1111/j.1365-294X.2007.03422.x

    Article  CAS  PubMed  Google Scholar 

  • Tupa DD, Davis WK (1976) Population-dynamics of San-Marcos salamander, Eurycea nana Bishop. Tex J Sci 27:179–195

    Google Scholar 

  • USFWS (1980) Endangered and threatened wildlife and plants; listing of the San Marcos salamander as threatened, the San Marcos gambusia as endangered, and the listing of critical habitat for Texas wild rice, San Marcos salamander, San Marcos gambusia, and fountain darter. Fed Regist 45(136):47355–47364

    Google Scholar 

  • Wang IA, Gilk SE, Smoker WW, Gharrett AJ (2007) Outbreeding effect on embryo development in hybrids of allopatric pink salmon (Oncorhynchus gorbuscha) populations, a potential consequence of stock translocation. Aquaculture 272:S152–S160. doi:10.1016/j.aquaculture.2007.08.002

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F-ST not equal 1/(4Nm + 1). Heredity 82:117–125. doi:10.1038/sj.hdy.6884960

    Article  PubMed  Google Scholar 

  • Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338. doi:10.1086/279872

    Article  Google Scholar 

Download references

Acknowledgements

We thank landowners D. Baker, R. Pfeuffer, E. Gilespie, and K. Keith. Thanks, also, to J. Fries, R. Gibson, B. Lewin, E. Chappell, R. Gonzalez, K. Epp, D. Robinson, T. Gonzales, C. Thompson, V. Cantu, P. Connor, S. Reilly, M. Alexander, P. Diaz, and K. Bell for assistance in the field. C. Gabor, J. Fries, N. Bendik, P. Chippindale, six anonymous reviewers, and the EEB group at Texas State University-San Marcos provided helpful comments and discussion. The IM results were carried out by using the resources of the Computational Biology Service Unit from Cornell University, which is partially funded by Microsoft Corporation. This work was funded by the US Fish and Wildlife Service and US Geological Survey (J. Fries), Texas State University-San Marcos (L. Lucas), and the San Antonio Conservation Society (L. Lucas). This work was approved by IACUC on September 22, 2004 (protocol number: 04-046 E25 EBSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris C. Nice.

Appendix

Appendix

Appendix A Optimized IM input parameters for pairwise population comparisons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, L.K., Gompert, Z., Ott, J.R. et al. Geographic and genetic isolation in spring-associated Eurycea salamanders endemic to the Edwards Plateau region of Texas. Conserv Genet 10, 1309 (2009). https://doi.org/10.1007/s10592-008-9710-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10592-008-9710-2

Keywords

Navigation